Bayesian Annealed Sequential Importance Sampling: An Unbiased Version of Transitional Markov Chain Monte Carlo

Author(s):  
Stephen Wu ◽  
Panagiotis Angelikopoulos ◽  
Costas Papadimitriou ◽  
Petros Koumoutsakos

The transitional Markov chain Monte Carlo (TMCMC) is one of the efficient algorithms for performing Markov chain Monte Carlo (MCMC) in the context of Bayesian uncertainty quantification in parallel computing architectures. However, the features that are associated with its efficient sampling are also responsible for its introducing of bias in the sampling. We demonstrate that the Markov chains of each subsample in TMCMC may result in uneven chain lengths that distort the intermediate target distributions and introduce bias accumulation in each stage of the TMCMC algorithm. We remedy this drawback of TMCMC by proposing uniform chain lengths, with or without burn-in, so that the algorithm emphasizes sequential importance sampling (SIS) over MCMC. The proposed Bayesian annealed sequential importance sampling (BASIS) removes the bias of the original TMCMC and at the same time increases its parallel efficiency. We demonstrate the advantages and drawbacks of BASIS in modeling of bridge dynamics using finite elements and a disk-wall collision using discrete element methods.

2015 ◽  
Vol 27 (2) ◽  
pp. 358-377 ◽  
Author(s):  
Panos Parpas ◽  
Berk Ustun ◽  
Mort Webster ◽  
Quang Kha Tran

2018 ◽  
Author(s):  
Λυκούργος Κεκεμπάνος

Η εκπαίδευση σε βαθιά νευρωνικά δίκτυα (ΒΝΔ) είναι μια απαραίτητη διαδικασία στη μηχανική μάθηση. Η διαδικασία εκπαίδευσης των ΒΝΔ στοχεύει στη βελτιστοποίηση των τιμών των παραμέτρων του δικτύου, που συχνά βασίζεται στην παράγωγο των λογαριθμικών πιθανοτήτων των παραμέτρων. Ως εκ τούτου, είναι πολύ πιθανό η διαδικασία βελτιστοποίησης να βρει τοπικές βέλτιστες τιμές αντί για καθολικές. Επιπλέον, οι συμβατικές προσεγγίσεις που χρησιμοποιούνται για αυτή τη διαδικασία, όπως οι μέθοδοι Μαρκοβιανής αλυσίδας Μόντε Κάρλο, όχι μόνο προσφέρουν μη βέλτιστη απόδοση χρόνου εκτέλεσης, αλλά επίσης αποτρέπουν την αποτελεσματική παραλληλοποίηση λόγω εγγενών εξαρτήσεων στη διαδικασία. Σε αυτή τη διατριβή, εξετάζουμε μια εναλλακτική προσέγγιση στις μεθόδους Μαρκοβιανής αλυσίδας Μόντε Κάρλο (Markov Chain Monte Carlo, MCMC), τον δειγματολήπτη ακολουθιακών Μόντε Κάρλο (Sequential Monte Carlo, SMC), ο οποίος γενικεύει τα φίλτρα σωματιδίων (particle filters). Πιο συγκεκριμένα, η διατριβή εστιάζει στη βελτίωση της απόδοσης και της ακρίβειας των μεθόδων SMC, ιδιαίτερα στο πλαίσιο της πλήρους Μπεϋζιανής μάθησης. Σε αυτό το πλαίσιο, η διατριβή προτείνει μια νέα μέθοδο εκπαίδευσης νευρωνικών δικτύων χρησιμοποιώντας τις μεθόδους σημαντικής δειγματοληψίας (μέθοδος importance sampling) και επαναδειγματοληψίας. Η αρχική σύγκριση των δύο μεθόδων αποκαλύπτει ότι η προτεινόμενη μεθοδολογία είναι χειρότερη τόσο στην ακρίβεια όσο και στην απόδοση. Αυτό οδήγησε την έρευνα να επικεντρωθεί στην βελτίωση της απόδοσης και ακρίβειας της προτεινόμενης μεθοδολογίας. Η ανάλυση απόδοσης ξεκίνησε με την εφαρμογή μιας νέας προτεινόμενης, παράλληλης και πλήρως κατανεμημένης μεθοδολογίας επαναδειγματοληψίας, με βελτιωμένη χρονική πολυπλοκότητα από την αρχική προσέγγιση χρησιμοποιώντας δύο πλαίσια MapReduce, το Hadoop και το Spark. Τα αποτελέσματα δείχνουν ότι το Spark είναι έως και 25 φορές ταχύτερο από το Hadoop, ενώ στο Spark η νέα προτεινόμενη μεθοδολογία είναι έως και 10 φορές ταχύτερη από την αρχική μέθοδο. Ωστόσο, παρατηρείται ότι η εφαρμογή του ίδιου αλγορίθμου στο Message Passing Interface (MPI) παρέχει σημαντικά καλύτερους χρόνους εκτέλεσης και είναι πιο κατάλληλος για τον προτεινόμενο αλγόριθμο. Η ανάλυση ακρίβειας ξεκίνησε με πειράματα που δείχνουν ότι ο βασικός δειγματολήπτης SMC παρέχει χειρότερη ακρίβεια από τους εναλλακτικούς ή ανταγωνιστικούς αλγόριθμους MCMC. Τρεις διαφορετικές στρατηγικές εφαρμόζονται στον βασικό δειγματολήπτη SMC παρέχοντας καλύτερη ακρίβεια. Η ανάλυση επεκτείνεται για να συμπεριλάβει ανταγωνιστικούς αλγόριθμους. Η εξαντλητική αξιολόγηση δείχνει ότι η προτεινόμενη προσέγγιση προσφέρει ανώτερη απόδοση και ακρίβεια.


2019 ◽  
Vol 489 (3) ◽  
pp. 4155-4160 ◽  
Author(s):  
Thomas McClintock ◽  
Eduardo Rozo

ABSTRACT Modern cosmological analyses constrain physical parameters using Markov Chain Monte Carlo (MCMC) or similar sampling techniques. Oftentimes, these techniques are computationally expensive to run and require up to thousands of CPU hours to complete. Here we present a method for reconstructing the log-probability distributions of completed experiments from an existing chain (or any set of posterior samples). The reconstruction is performed using Gaussian process regression for interpolating the log-probability. This allows for easy resampling, importance sampling, marginalization, testing different samplers, investigating chain convergence, and other operations. As an example use case, we reconstruct the posterior distribution of the most recent Planck 2018 analysis. We then resample the posterior, and generate a new chain with 40 times as many points in only 30 min. Our likelihood reconstruction tool is made publicly available online.


2001 ◽  
Vol 13 (11) ◽  
pp. 2549-2572 ◽  
Author(s):  
Mark Zlochin ◽  
Yoram Baram

We propose a new Markov Chain Monte Carlo algorithm, which is a generalization of the stochastic dynamics method. The algorithm performs exploration of the state-space using its intrinsic geometric structure, which facilitates efficient sampling of complex distributions. Applied to Bayesian learning in neural networks, our algorithm was found to produce results comparable to the best state-of-the-art method while consuming considerably less time.


Sign in / Sign up

Export Citation Format

Share Document