shale gas
Recently Published Documents


TOTAL DOCUMENTS

5711
(FIVE YEARS 1804)

H-INDEX

98
(FIVE YEARS 20)

Desalination ◽  
2022 ◽  
Vol 526 ◽  
pp. 115545
Author(s):  
Yuanhui Liu ◽  
Qidong Wu ◽  
Chen Chen ◽  
Tong Li ◽  
Shi Liu ◽  
...  
Keyword(s):  

2022 ◽  
Vol 319 ◽  
pp. 126067
Author(s):  
Gaoyin Zhang ◽  
Zhiqiang Wu ◽  
Xiaowei Cheng ◽  
Xialan Sun ◽  
Chunmei Zhang ◽  
...  

2022 ◽  
Vol 45 ◽  
pp. 102486
Author(s):  
Harry Finklea ◽  
Lian-Shin Lin ◽  
Golnoosh Khajouie
Keyword(s):  

Author(s):  
Chaodong Tan ◽  
Hanwen Deng ◽  
Wenrong Song ◽  
Huizhao Niu ◽  
Chunqiu Wang

AbstractEvaluating the productivity potential of shale gas well before fracturing reformation is imperative due to the complex fracturing mechanism and high operation investment. However, conventional single-factor analysis method has been unable to meet the demand of productivity potential evaluation due to the numerous and intricate influencing factors. In this paper, a data-driven-based approach is proposed based on the data of 282 shale gas wells in WY block. LightGBM is used to conduct feature ranking, K-means is utilized to classify wells and evaluate gas productivity according to geological features and fracturing operating parameters, and production optimization is realized through random forest. The experimental results show that shale gas productivity potential is basically determined by geological condition for the total influence weights of geologic properties take the proportion of 0.64 and that of engineering attributes is 0.36. The difference between each category of well is more obvious when the cluster number of well is four. Meanwhile, those low production wells with good geological conditions but unreasonable fracturing schemes have the greatest optimization space. The model constructed in this paper can classify shale gas wells according to their productivity differences, help providing suggestions for engineers on productivity evaluation and the design of fracturing operating parameters of shale gas well.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 602
Author(s):  
Shiqi Liu ◽  
Yuyang Liu ◽  
Xiaowei Zhang ◽  
Wei Guo ◽  
Lixia Kang ◽  
...  

As an emerging unconventional energy resource, shale gas has great resource potential and developmental prospects. The effective evaluation of geological sweet spots (GSS), engineering sweet spots (ESS) and comprehensive sweet spots (CSS) is one of the main factors for a high-yield scale and economic production of shale gas. Sweet spot evaluation involves a comprehensive analysis based on multiple parameters. Conventional evaluation methods consider relatively simple or single factors. Although the main influencing factors are understood, the influence of different factors is as of yet unknown, and a comprehensive consideration may strongly affect the evaluation results. In this paper, the fuzzy mathematics method is introduced for shale gas sweet spot evaluation. With the help of fuzzy mathematics tools, such as membership function, the objective of comprehensive sweet spots evaluation based on multiple parameters is realized. Additionally, the reliability of the evaluation of sweet spots is improved. Firstly, previous research results are used for reference, and the evaluation factor system of geological and engineering sweet spots of shale gas is systematically analyzed and established. Then, the basic principle of the fuzzy comprehensive evaluation method is briefly introduced, and a geological engineering integrated shale gas sweet spots evaluation method, based on the fuzzy comprehensive evaluation method, is designed and implemented. Finally, the data from HB blocks in the Z shale gas field in China are adopted. According to the evaluation results, the modified method is tested. The results show that the method proposed in this paper can synthesize a number of evaluation indices, quickly and effectively evaluate the GSS, ESS and CSS in the target area, and the results have high rationality and accuracy, which can effectively assist in well-pattern deployment and fracture design.


Sign in / Sign up

Export Citation Format

Share Document