Controllability Ellipsoid to Evaluate the Performance of Mobile Manipulators for Manufacturing Tasks

2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Stephen L. Canfield ◽  
Reabetswe M. Nkhumise

This paper develops an approach to evaluate a state-space controller design for mobile manipulators using a geometric representation of the system response in tool space. The method evaluates the robot system dynamics with a control scheme and the resulting response is called the controllability ellipsoid (CE), a tool space representation of the system’s motion response given a unit input. The CE can be compared with a corresponding geometric representation of the required motion task (called the motion polyhedron) and evaluated using a quantitative measure of the degree to which the task is satisfied. The traditional control design approach views the system response in the time domain. Alternatively, the proposed CE views the system response in the domain of the input variables. In order to complete the task, the CE must fully contain the motion polyhedron. The optimal robot arrangement would minimize the total area of the CE while fully containing the motion polyhedron. This is comparable to minimizing the power requirements of robot design when applying a uniform scale to all inputs. It will be shown that changing the control parameters changes the eccentricity and orientation of the CE, implying a preferred set of control parameters to minimize the design motor power. When viewed in the time domain, the control parameters can be selected to achieve desired stability and time response. When coupled with existing control design methods, the CE approach can yield robot designs that are stable, responsive, and minimize the input power requirements.

1991 ◽  
Vol 81 (6) ◽  
pp. 2351-2370
Author(s):  
Zoltan A. Der ◽  
Robert H. Shumway ◽  
Michael R. Hirano

Abstract Waveform modeling in the time domain matches the various frequency components of seismic signals unevenly; the agreement is better at low frequencies and becomes progressively worse towards higher frequencies. The net effect of this kind of time-domain modeling is that the resolution in the spatial details of the source is less than optimal since the high-frequency components of the signal with their short wavelengths to resolve finer details do not fit the data. These problems are demonstrated by numerical simulations and by the reanalysis of some aspects of the El Golfo earthquake in using a new seismic imaging technique based on a generalization of an f-k algorithm. This procedure computes a statistic that can be used to derive confidence limits of the parameters sought in the inversion, thus providing a quantitative measure of the uncertainties in the results.


1967 ◽  
Vol 63 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. S. Dunn

AbstractAn integral transformation is denned over a finite interval of the time domain. When the Laplace transform exists, the finite transform yields identical results. However, the finite transform is found to be considerably more general than the Laplace transform. It permits consideration of functions which are not of exponential order, leads to a simple scheme to determine system response, and is applicable to boundary-value problems.


2012 ◽  
Vol 479-481 ◽  
pp. 2267-2270
Author(s):  
Jing Jin ◽  
Zhen Shan Zhang ◽  
Xin Xiong

The rigid-flexible system dynamic model of wobble plate engine was created by BUSH element and so on in ADAMS software. And stiffness optimized calculation of engine rubber isolator ring and spring was done by ADAMS optimized module. By comparing the time domain and frequency domain vibration response before optimization and after optimization, the feasibility of optimized method for decreasing engine vibration and changing system response frequency range was verified. This method could provide important reference for vibration dynamic model creating of engine or analogous mechanical system. Its conclusions also could provide reference for decreasing vibration study.


Author(s):  
T. M. Cameron ◽  
J. H. Griffin

A method is developed that can be used to calculate the stationary response of randomly excited nonlinear systems. The method iterates to obtain the fast Fourier transform of the system response, returning to the time domain at each iteration to take advantage of the ease in evaluating nonlinearities there. The updated estimates of the nonlinear terms are transformed back into the frequency domain in order to continue iterating on the frequency spectrum of the staionary response. This approach is used to calculate the response of a one degree of freedom system with friction damping that is subjected to random excitation. The one degree of freedom system provides a single mode approximation of systems (e.g. turbine blades) with friction damping. This study investigates various strategies that can be used to optimize the friction load so as to minimize the response of the system.


Author(s):  
Vu Van Tan ◽  
Olivier Sename ◽  
Péter Gáspár

Tractor semi-trailers are increasingly playing an important role in freight transportation worldwide. Although most tractor semi-trailers are equipped with a passive anti-roll bar system, however accidents involving this type of vehicle are still frequent and have serious consequences. This paper presents an H∞ controller design for an active anti-roll bar system in order to enhance the roll stability of a tractor semi-trailer with the torque control generated at all axles. The considered performance outputs include the lateral acceleration, the normalised load transfer for both tractor and semi-trailer, as well as the magnitude of the torque control to avoid the actuator’s saturation. The effectiveness of the proposed method is evaluated in the frequency domain via the transfer function magnitude from the steering angle to the survey signals, and in the time domain through the nonlinear vehicle model of TruckSim® software. The evaluation results show that the roll stability of the tractor semi-trailer using the H∞ active anti-roll bar system has improved by more than 20% compared to a passive vehicle.


2018 ◽  
Vol 28 (3) ◽  
pp. 416-428 ◽  
Author(s):  
Sergey A. Mokrushin ◽  
Valeri S. Khoroshavin ◽  
Sergey I. Ohapkin ◽  
Alexander V. Zotov ◽  
Victor S. Grudinin

Introduction.Ensuring the safety of country food industry in terms of the duration of storage and the quality of products is impossible without sterilizing products in autoclaves. The effectiveness of the sterilization processes depends on the degree of their automation. In the last twenty years, the improvement of automatic and automated control systems was primarily based on the development of technical means for automation without theoretical justification of decision-making. The proposed work is aimed at identifying the links between the parameters and connections of the sterilization process and the choice of structural and parametric features of the control system. Materials and Methods. A qualitative analysis is carried out based on the modern theory of automatic control for an approximative model of the thermal process of steam heating in an autoclave, taking into account the laws of heat transfer and the sufficiency of using a twodimensional model depending upon the structural and functional features of the model, which have regard to the parameters and relationships of the process, namely, the Kalman’s controllability properties of the model in the time domain in the state-space representation (the transition from the transfer function with zeros in the numerator to the normal differential system differential equations is also described). There were also analized the stability properties of the model in the frequency domain by means of transfer functions and structural transformations and the relationship of parameters in the form of inequalities with the subsequent choice of proportional-integral-differential configuration components for a real autoclave using the matrix of expert estimates. Results. It is shown that to make a qualitatively study of the issues of controllability and stability of the approximative model of the thermal process of water heating by steam in an autoclave, depending on the process parameters, it is necessary to represent the model the time domain (in the state-space representation) and in the frequency domain (in the form of transfer functions). The analysis of the controllability of the process is based on three approaches: the first (formalized) approach is based on the representation of the model in the form of a normal system of ordinary differential equations in the Cauchy form with the development of a method of decreasing the order of the higher derivatives of coordinates and introducing additional control signals taking into account the control derivatives; the second (unformalized) is based on the exclusion of management derivatives through structural transformation; the third (direct) approach uses the first-order heat balance and heat conduction equations derived from physical considerations. Under the conditions of Kalman’s controllability, dependencies between the parameters of the process and the degree of its controllability have been obtained.The analysis of the stability of the process is based on studying the poles of the transfer functions in the frequency domain and the characteristic roots of the equations of state in the time domain. On the basis of structural transformations, a closed canister heating loop with water with inertia, depending on the autoclave charging parameters, is isolated. Transient processes in this circuit take an amplifying, aperiodic or integral character, which affects the nature of the transient processes of the control system as a whole. The formalized choice of the components of the proportional-integral-differential regulation law is carried out depending on the frequency of application of the degree of loading and the need for the components of the proportional-integral-differential regulator using the matrix of expert estimates. Conclusions. The results of the research will serve as the material for the development of a real model of the autoclaving process, taking into account the static and dynamic characteristics of measuring, conversion and actuating elements, investigating the influence and compensation of inertia and nonlinearities of real elements, followed by the development of an automated system for controlling the sterilization process in autoclaves. The results of the work can be used to study general and applied problems of optimal control in both food and other industries, for example, in the production of building materials and the production of rubber products.


Author(s):  
J-C Lee

A hydraulic attenuator has been used in hydraulic active suspension systems of automotive vehicles to reduce high amplitude ripple pressure of a pump. The hydraulic attenuator considered in this study is so highly non-linear and of high order that the analysis in the time domain has been performed infrequently, although the frequency response analysis with the transfer matrix method was applicable. In this paper, a state space representation of the dynamics for a hydraulic attenuator is presented, utilizing the electrical analogy. The results of the experiment are compared with those of the simulation to validate the state space model proposed. The comparison reveals that the state space model proposed is practically applicable for estimating the dynamic responses of the hydraulic attenuator in the time domain.


1989 ◽  
Vol 56 (1) ◽  
pp. 149-154 ◽  
Author(s):  
T. M. Cameron ◽  
J. H. Griffin

A method is proposed for analyzing the steady-state response of nonlinear dynamic systems. The method iterates to obtain the discrete Fourier transform of the system response, returning to the time domain at each iteration to take advantage of the ease in evaluating nonlinearities there—rather than analytically describing the nonlinear terms in the frequency domain. The updated estimates of the nonlinear terms are transformed back into the frequency domain in order to continue iterating on the frequency spectrum of the steady-state response. The method is demonstrated by solving a problem with friction damping in which the excitation has multiple discrete frequencies.


Sign in / Sign up

Export Citation Format

Share Document