time domain modeling
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 47)

H-INDEX

34
(FIVE YEARS 3)

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2118
Author(s):  
Elias Kaufhold ◽  
Simon Grandl ◽  
Jan Meyer ◽  
Peter Schegner

This paper introduces a new black-box approach for time domain modeling of commercially available single-phase photovoltaic (PV) inverters in low voltage networks. An artificial neural network is used as a nonlinear autoregressive exogenous model to represent the steady state behavior as well as dynamic changes of the PV inverter in the frequency range up to 2 kHz. The data for the training and the validation are generated by laboratory measurements of a commercially available inverter for low power applications, i.e., 4.6 kW. The state of the art modeling approaches are explained and the constraints are addressed. The appropriate set of data for training is proposed and the results show the suitability of the trained network as a black-box model in time domain. Such models are required, i.e., for dynamic simulations since they are able to represent the transition between two steady states, which is not possible with classical frequency-domain models (i.e., Norton models). The demonstrated results show that the trained model is able to represent the transition between two steady states and furthermore reflect the frequency coupling characteristic of the grid-side current.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 506
Author(s):  
Jeroen D. M. De Kooning ◽  
Dimitar Bozalakov ◽  
Lieven Vandevelde

Distributed generation (DG) allows the production of renewable energy where it is consumed, avoiding transport losses. It is envisioned that future DG units will become more intelligent, not just injecting power into the grid but also actively improving the power quality by means of active power filtering techniques. In this manner, voltage and current harmonics, voltage unbalance or over-voltages can be mitigated. To achieve such a smart DG unit, an appropriate multi-functional converter topology is required, with full control over the currents exchanged with the grid, including the neutral-wire current. For this purpose, this article studies the three-phase four-wire split-link converter. A known problem of the split-link converter is voltage unbalance of the bus capacitors. This mid-point can be balanced either by injecting additional zero-sequence currents into the grid, which return through the neutral wire, or by injecting a compensating current into the mid-point with an additional half-bridge chopper. For both methods, this article presents a discrete time domain model to allow controller design and implementation in digital control. Both techniques are validated and compared by means of simulation results and experiments on a test setup.


2021 ◽  
Vol 35 (11) ◽  
pp. 1288-1289
Author(s):  
Adam Mock

Obtaining agreement between theoretical predictions that assume single-frequency excitation and finite-difference time-domain (FDTD) simulations that employ broadband excitation in the presence of time-varying materials is challenging due to frequency mixing. A simple solution is proposed to reduce artifacts in FDTD-calculated spectra from the frequency mixing induced by harmonic refractive index modulation applicable to scenarios in which second order and higher harmonics are negligible. Advantages of the proposed method are its simplicity and applicability to arbitrary problems including resonant structures.


Sign in / Sign up

Export Citation Format

Share Document