An Eulerian Orthogonal Cutting Model for Unidirectional Fiber-Reinforced Polymers

Author(s):  
Shengqi Zhang ◽  
John S. Strenkowski

An Eulerian model is described that simulates orthogonal cutting of unidirectional fiber-reinforced polymer (FRP) composites. The continuous finite element method (FEM) and the discontinuous Galerkin (DG) method are combined to solve the governing equations. A progressive damage model is implemented to predict subsurface damage in the composite. A correction factor that accounts for fiber curvature is included in the model that incorporates the influence of fiber bending. It was found that fiber orientation has a dominant influence on both the cutting forces and subsurface damage. Good agreement was found between predicted cutting forces and subsurface damage and published experimental observations.

PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nicola Magino ◽  
Jonathan Köbler ◽  
Heiko Andrä ◽  
Matti Schneider ◽  
Fabian Welschinger

2015 ◽  
Vol 1129 ◽  
pp. 283-289
Author(s):  
Mariaenrica Frigione

In the last decades, the use of fiber reinforced polymers (FRP) composites to repair and/or upgrade existing buildings or infrastructure systems proved to be an effective solution, being able to overcome some of the drawbacks experienced with traditional interventions. The knowledge of durability behavior of polymer composite materials in terms of their degradation/aging causes and mechanisms is a critical issue for a safe and advantageous implementation of FRP. The durability of FRP employed in civil infrastructure applications mainly depends on the durability of any single component and on the environment (service conditions) in which the system operates. The components of FRP are: polymeric resins (more frequently thermosetting resins cured in service, i.e. at ambient temperature), fibers and the interface between them. Referring to the resins, heavy concerns arise from the behavior of “Cold-cured” thermosetting resins, often epoxy, used as matrices to manufacture (through wet layup technique) and adhesives to apply, also precured, FRP. The experimental studies present in current literature on the effect of environmental agents on the properties of FRP highlight the crucial role of the adhesive/matrix on the behavior of the whole system. Many other parameters (i.e. direction and disposition of fibers, direction of load application) are involved in the assessment of the durability of FRP. However, in the durability studies of FRP and their components, a lack of specific standards for such materials is recognized. In addition, the results of durability studies do not always agree, possibly due to different curing/conditioning conditions employed. The aim of this work is to critically illustrate the durability studies carried out on FRP for civil engineering applications and appeared in current literature, highlighting the issues that are not yet assessed and addressed.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4520
Author(s):  
Salman Pervaiz ◽  
Taimur Ali Qureshi ◽  
Ghanim Kashwani ◽  
Sathish Kannan

Composite materials are a combination of two or more types of materials used to enhance the mechanical and structural properties of engineering products. When fibers are mixed in the polymeric matrix, the composite material is known as fiber-reinforced polymer (FRP). FRP materials are widely used in structural applications related to defense, automotive, aerospace, and sports-based industries. These materials are used in producing lightweight components with high tensile strength and rigidity. The fiber component in fiber-reinforced polymers provides the desired strength-to-weight ratio; however, the polymer portion costs less, and the process of making the matrix is quite straightforward. There is a high demand in industrial sectors, such as defense and military, aerospace, automotive, biomedical and sports, to manufacture these fiber-reinforced polymers using 3D printing and additive manufacturing technologies. FRP composites are used in diversified applications such as military vehicles, shelters, war fighting safety equipment, fighter aircrafts, naval ships, and submarine structures. Techniques to fabricate composite materials, degrade the weight-to-strength ratio and the tensile strength of the components, and they can play a critical role towards the service life of the components. Fused deposition modeling (FDM) is a technique for 3D printing that allows layered fabrication of parts using thermoplastic composites. Complex shape and geometry with enhanced mechanical properties can be obtained using this technique. This paper highlights the limitations in the development of FRPs and challenges associated with their mechanical properties. The future prospects of carbon fiber (CF) and polymeric matrixes are also mentioned in this study. The study also highlights different areas requiring further investigation in FDM-assisted 3D printing. The available literature on FRP composites is focused only on describing the properties of the product and the potential applications for it. It has been observed that scientific knowledge has gaps when it comes to predicting the performance of FRP composite parts fabricated under 3D printing (FDM) techniques. The mechanical properties of 3D-printed FRPs were studied so that a correlation between the 3D printing method could be established. This review paper will be helpful for researchers, scientists, manufacturers, etc., working in the area of FDM-assisted 3D printing of FRPs.


Materials ◽  
2005 ◽  
Author(s):  
Jamal Sheikh-Ahmad ◽  
Rahul Yadav

Fiber reinforced polymers are widely used in the transportation, aerospace and chemical industries. In rare instances these materials are produced net-shape, and secondary processing such as machining and assembly may be required to produce a finished product. Because fiber reinforced polymers are heterogeneous materials, they do not machine in a similar way to metals. Thus, the theory of metal machining is not valid for the analysis of machining of fiber reinforced composites. Previous attempts in modeling this problem have adopted Merchant’s theory for metal cutting by assuming that chip formation takes place in a shear plane where the inclination angle is determined by the minimum energy principle. This class of models showed that model predictions are valid only for fiber orientations less than 60°. Furthermore, these models are incapable of predicting cutting forces for multidirectional laminates or complex tool geometry. The work presented here focuses on providing a predictive model for the cutting forces in milling both unidirectional and multidirectional laminates. The model is based on the specific cutting energy principle and accounts for a wide range of fiber orientations and chip thickness. Results from this model were found to be in good agreement with experimental results over the entire range of fiber orientations from 0 to 180°.


Sign in / Sign up

Export Citation Format

Share Document