tool geometry
Recently Published Documents


TOTAL DOCUMENTS

860
(FIVE YEARS 207)

H-INDEX

41
(FIVE YEARS 5)

Author(s):  
Kourosh Tatar ◽  
Inge Svenningsson

AbstractThe tool geometry is generally of great significance in metal cutting performance. The response surface method was used to optimize chamfer geometry to achieve reliable and minimum tool wear in slot milling. Models were developed for edge chipping, rake wear, and flank wear. The adequacy of the models was verified using analysis of variance at a 95% confidence level. Each response was optimized individually, and the multiple responses were optimized simultaneously using the desirability function approach. The Monte Carlo simulation method was applied to tolerance analysis. All milling tests were conducted at dry conditions; the chamfer width and the chamfer angle varied between 0.1 and 0.3 mm, and 10 and 30°, respectively. Optimal chamfer geometry for minimizing chipping and rake wear was small chamfer width and chamfer angle. The flank wear reached the minimum value for the tool with 0.18 mm chamfer width and 10° chamfer angle. The obtained composite model predicted good edge strength and minimum overall wear when the chamfer was 0.1 mm wide at a 10° angle. Thermal cracks were observed on the tools. They were small on the edges with the finest and least negative chamfer but were more significant on the more negative and greater chamfer. A great chamfer width and chamfer angle also resulted in insufficient chip evacuation. The results show how the edge geometry affects the tool’s reliability and wear and may help manufacturers minimize tool cost and downtime.


Author(s):  
Fabian Kappe ◽  
Luca Schadow ◽  
Mathias Bobbert ◽  
Gerson Meschut

A frequently used mechanical joining process that enables the joining of dissimilar materials is self-piercing riveting. Nevertheless, the increasing number of materials as well as material–thickness combinations leads to the need for a large number of rivet–die combinations as the rigid tool systems are not able to react to changing boundary conditions. Therefore, tool changes or system conversions are needed, resulting in longer process times and inflexibility of the joining processes. In this investigation, the flexibility of the self-piercing riveting process by reducing the required tool–geometry combinations is examined. For this purpose, various joints consisting of similar as well as dissimilar materials with different material thickness are sampled and analysed. Subsequently, a cluster algorithm is used to reduce the number of rivet–die combinations required. Finally, the effect of the changed tool geometries on both the joint formation and the joint load-bearing capacity is investigated. The investigation showed that a reduction by 55% of the required rivet–die combinations was possible. In particular, the rivet length influences the joint formation and the joint load-bearing capacity. An exclusive change of the die (e.g. die depth or die diameter) did not show a significant influence on these parameters.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kazimierz A. Orlowski ◽  
Daniel Chuchala ◽  
Marcin Szczepanski ◽  
Wojciech Migda ◽  
Wiktoria Wojnicz ◽  
...  

AbstractThe shrinking global forest area limits the supply of industrially usable raw resources. This, in combination with the ever-increasing consumption of timber due to population growth can lead to the lack of a positive balance between the annual volumetric growth and consumption of wood. An important innovation toward increasing environmental and economic sustainability of timber production is to reduce the volume of wood residues by minimizing the sawing kerf. It results in higher material yield but may impact the dimensional accuracy of derived products. Therefore, the cutting tool geometry as well as the sawing process as a whole must be carefully optimized to assure optimal use of resources. The goal of this study is to better understand the causes of machining errors that occur when sawing wood with saws of varying thickness of kerf, with a special focus on re-sawing thin lamellae performed on the gang saw. Numerical simulations were tested against experimental results, considering influence of diverse components of cutting forces, in addition to the initial and operating stiffness coefficients of the saw blade. It has been demonstrated that asymmetric loads from the cutting process for the scraper saw blade can cause sawing inaccuracies. The simulation methodology developed in this research can be straightforwardly extended towards determination of optimal geometry of other cutting tools, particularly with the reduced sawing kerf. This may lead to more sustainable use of natural resources as well as an increase in economic gain for the wood processing industries.


2022 ◽  
Vol 1048 ◽  
pp. 241-253
Author(s):  
Arindom Baruah ◽  
Jayaprakash Murugesan ◽  
Hemant Borkar

Friction stir spot welding process is a solid state joining process which has attracted great attention due to its ability to join low melting point light weight alloys such as aluminium and magnesium with high efficiency. In order to understand the complex thermo-mechanical joining process involved with friction stir spot welding, a numerical simulation study was done using ABAQUS finite element software. The simulation primarily aims to interpret the effect of a set of process parameters and tool geometry on the workpiece plates. Johnson-Cook damage criteria model was used to obtain the stress and strain distribution on the workpiece consisting of aluminium 6061 and magnesium AZ-31B placed in a lap configuration. Temperature distribution of the workpiece was obtained by simulating a penalty based frictional contact between the tool and the plate. The thermal results showed that the maximum temperatures attained were significantly lower than the melting points of the base materials indicating that the material mixing and joining occurred as a result of superplastic deformation process instead of melting. Change in material flow behaviour was also observed by the model as pin and shoulder geometries changed.


2022 ◽  
Vol 215 ◽  
pp. 105200
Author(s):  
Seyed Hasan Hoseinian ◽  
Abbas Hemmat ◽  
Ali Esehaghbeygi ◽  
Gholamhossein Shahgoli ◽  
Alireza Baghbanan

2021 ◽  
Vol 23 (12) ◽  
pp. 491-510
Author(s):  
Nuzhat Nazir ◽  
◽  
Manish Kumar Gupta ◽  

Friction stir welding (FSW) has become a popular method for connecting low weight metals. Material joining occurs in the solid state in FSW. Inserting a rotating tool travelling over the faying surfaces of the material to be bonded is used to complete the procedure. It produces practically defect-free welds with little distortion and a fine grain structure. However, the welding mechanism and process parametric combination for welds with consistent and dependable outcomes are not well understood. The thesis details the experimental efforts made to suggest an optimal combination of parameters with simple tool geometry for FSW at greater linear speeds. The materials for research were two precipitation hardenable aluminium alloys: 6mm thick 2219-T87 and 5083H321. The influence of process parameters on weld microstructural changes and defect development was also examined. The optimal combination of process parameters for the FSW of aluminium alloys was proposed, and the most relevant parameter for weld strength and quality was discovered.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7608
Author(s):  
Artur Rękas ◽  
Tomasz Kaczmarek ◽  
Michał Wieczorowski ◽  
Bartosz Gapiński ◽  
Michał Jakubowicz ◽  
...  

The paper presents a method for checking the geometry of stamped car body parts using a 3D optical measurement system. The analysis focuses on the first forming operation due to the deformation and material flow associated with stall thresholds. An essential element of the analysis is determining the actual gap occurring between the forming surfaces based on the die and punch geometry used in the first stamping operation. The geometry of car body elements at individual production stages was analyzed using an optical laser scanner. The control carried out in this way allowed one to correctly position the tools (punch and die), thus introducing the correction of technological parameters, having a fundamental influence on the specific features of the final product. This type of approach has not been used before to calibrate the technological line and setting of shaping tools. The influence of the manufactured product geometry in intermediate operations on the final geometry features was not investigated.


Author(s):  
JR Nijin ◽  
T Jagadesh

Fabrication of an axisymmetric biomedical implant with good dimensions, form and surface integrity features are a challenging task in the micro-manufacturing industry. This is due to workpiece deflection, vibrations, tool wear and adhesion of the chip on the cutting inset during the micromachining process. So experimental evaluation on the variation of tool geometry is expensive and difficult as stated in prior literature. So, in this work, a finite-element method simulation is developed to comprehend the physics of the process and predict the energy consumption by incorporating the effect of material strengthening caused by shearing of material across the grain, shear band pattern upon strain rate and tool geometry such as edge radius, nose radius and rake angle. The modified Johnson-Cook material model is used to state the flow stress and an adaptive remeshing technique is utilized to model the plastic deformation at a higher strain rate during the simulation process. Initially, the model is developed in a transient state and then modified to a steady-state to obtain the output process parameters. The proposed model is calibrated and validated with experimental results reported in the literature. It is inferred that the cutting force, thrust force and feed force acquired from finite-element method simulation have been confirmed experimentally with prediction accuracy of 94%, 82.66% and 87.02%, respectively. It is also inferred that energy consumption during machining reduces with an increase in rake angle because of the sharpness of the cutting edge and less friction between tool and chip. An increase of nose radius and edge radius produces high thrust force and energy consumption and impedes high radial depth of cut. For the same machining parameters with the increase of edge radius and decrease of rake angle the mechanism of material removal changes from shearing to ploughing.


2021 ◽  
Author(s):  
Mourad NOUIOUA ◽  
Aissa LAOUISSI ◽  
Mohamed Mossaab BLAOUI ◽  
Abderzzak HAMMOUDI ◽  
Mohamed Athmane YALLESE

Abstract The current study investigates the Wet and MQL machining, when turning of X210Cr12 steel, using a multilayer-coated carbide insert (GC-4215) with various nose radius, the consideration of the tool geometry with different cooling modes allow as to assess the comportment of the machined steel against the cutting combinations. The response surface methodology (RSM) has been used for regression analysis and to evaluate the contribution of the cutting parameters on surface roughness, tangential force and cutting power using ANOVA analysis. The developed models have been used to predict the studied output factors according to the selected cutting parameters for wet and MQL machining. A comparative between the cooling techniques have been established to determine the most effective technique in terms of part quality, lubricant consumption and power consumption. Finally, four new optimization technics have been used for the process optimization using the MQL models for an environment-friendly machining.


Sign in / Sign up

Export Citation Format

Share Document