A Mistuned Forced Response Analysis of an Embedded Compressor Blisk Using a Reduced-Order Model

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Mauricio Gutierrez Salas ◽  
Paul Petrie-Repar ◽  
Robert E. Kielb ◽  
Nicole L. Key

Accuracy when assessing mistuned forced response analyses is still a major concern. Since a fully coupled analysis is still very computational expensive, several simplifications and reduced-order models (ROMs) are carried out. The use of a reduction method, the assumptions and simplifications, generate different uncertainties that challenge the accuracy of the results. Experimental data are needed for validation and also to understand the propagation of these uncertainties. This paper shows a detailed mistuned forced response analysis of a compressor blisk. The blisk belongs to the Purdue Three-Stage (P3S) Compressor Research Facility. Two different stator–rotor–stator configurations of 38 and 44 upstream stator vanes are taken into consideration. Several loading conditions are analyzed at three different speed lines. A ROM known as subset nominal mode (SNM), has been used for all the analyses. This reduction takes as a basis a set of modes within a selected frequency spectrum. It can consider a complete family of modes to study the disk–blade modal interaction. A detailed comparison between the predicted and measured results has been performed, showing a good agreement for the high loading (HL) conditions.

Author(s):  
Mauricio Gutierrez ◽  
Paul Petrie-Repar ◽  
Robert E. Kielb ◽  
Nicole L. Key

Accuracy when assessing mistuned forced response analyses is still a mayor concern. Since a full coupled analysis is still very computational expensive, several simplifications and reduced order models are carried out. The use of a reduction method, the assumptions and simplifications, generate different uncertainties that challenge the accuracy in the results. Experimental data are needed for validation and also to understand the propagation of these uncertainties. This paper shows a detailed mistuned forced response analysis of a compressor blisk. The blisk belongs to the Purdue Three-Stage (P3S) Compressor Research Facility. Two different stator-rotor-stator configurations of 38 and 44 upstream stator vanes are taken into consideration. Several loading conditions are analyzed at three different speed lines. A reduced order model known as subset nominal mode (SNM), has been used for all the analyses. This reduction takes as a basis a set of modes within a selected frequency spectrum. A detailed comparison between the predicted and measured results have been performed, showing a good agreement for the high loading conditions.


Author(s):  
Mauricio Gutierrez Salas ◽  
Ronnie Bladh ◽  
Hans Mårtensson ◽  
Paul Petrie-Repar ◽  
Torsten Fransson ◽  
...  

Accurate structural modeling of blisk mistuning is critical for the analysis of forced response in turbomachinery. Apart from intentional mistuning, mistuning can be due to the manufacturing tolerances, corrosion, foreign object damage and in-service wear in general. It has been shown in past studies that mistuning can increase the risk of blade failure due to energy localization. For weak blade to blade coupling, this localization has been shown to be critical and higher amplitudes of vibration are expected in few blades. This paper presents a comparison of three reduced order models for the structural modeling of blisks. Two of the models assume cyclic symmetry while the third model is free of this assumption. The performance of the reduced order models for cases with small and large amount of mistuning will be examined. The benefits and drawbacks of each reduction method will be discussed.


Author(s):  
Yongliang Duan ◽  
Chaoping Zang ◽  
E. P. Petrov

This paper is focused on the analysis of effects of mistuning on the forced response of gas-turbine bladed discs vibrating in the frequency ranges corresponding to higher modes. For high modes the blade aerofoils are deformed during vibrations and the blade mode shapes differ significantly from beam mode shapes. A model reduction technique is developed for the computationally efficient and accurate analysis of forced response for bladed discs vibrating in high frequency ranges. High-fidelity finite element models of a tuned bladed disc sector are used to provide primary information about dynamic properties of a bladed disc and the blade mistuning is modelled by specially defined mistuning matrices. The forced response displacement and stress amplitude levels are studied for high frequency ranges. The effects of different types of mistuning are examined and the existence of high amplifications of mistuned forced response levels is shown for high-mode vibrations: in some cases, the resonance peak response of a tuned structure can be lower than out-of-resonance amplitudes of its mistuned counterpart.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Chulwoo Jung ◽  
Akira Saito ◽  
Bogdan I. Epureanu

A novel methodology to detect the presence of a crack and to predict the nonlinear forced response of mistuned turbine engine rotors with a cracked blade and mistuning is developed. The combined effects of the crack and mistuning are modeled. First, a hybrid-interface method based on component mode synthesis is employed to develop reduced-order models (ROMs) of the tuned system with a cracked blade. Constraint modes are added to model the displacements due to the intermittent contact between the crack surfaces. The degrees of freedom (DOFs) on the crack surfaces are retained as active DOFs so that the physical forces due to the contact/interaction (in the three-dimensional space) can be accurately modeled. Next, the presence of mistuning in the tuned system with a cracked blade is modeled. Component mode mistuning is used to account for mistuning present in the uncracked blades while the cracked blade is considered as a reference (with no mistuning). Next, the resulting (reduced-order) nonlinear equations of motion are solved by applying an alternating frequency/time-domain method. Using these efficient ROMs in a forced response analysis, it is found that the new modeling approach provides significant computational cost savings, while ensuring good accuracy relative to full-order finite element analyses. Furthermore, the effects of the cracked blade on the mistuned system are investigated and used to detect statistically the presence of a crack and to identify which blade of a full bladed disk is cracked. In particular, it is shown that cracks can be distinguished from mistuning.


Author(s):  
Yuan Zhuang ◽  
Decheng Wan

Fully coupled analysis of ship motion and sloshing tank in waves is essential for floating structures which store and transports natural gas. For partially filled tanks would generate violent sloshing due to external wave excitation, and the sloshing flow can consequently affect ship motion. Therefore, how to evaluate ship motion and sloshing phenomenon in tank is of great importance, especially under real sea state, when wave induced sloshing would be more complex than that under linear wave condition. In the present work, a CFD-based method is applied to simulate both external wave field and inner sloshing tank field in regular waves and irregular waves. The ship is a simplified FPSO, with two LNG tanks. All the numerical simulations are carried out by the in-house CFD code naoe-FOAM-SJTU, which is developed on the open source platform OpenFOAM. The regular and irregular wave condition is simulated based on open source toolbox waves2Foam. The main parameters of coupling effect of ship motion and sloshing tank, such as the time history of ship motion, sloshing phenomenon in tanks are obtained by our computations. The predicted results for the coupling effects of ship motion and sloshing tank in regular waves are compared with the corresponding experimental data. The comparison is satisfactory and shows that the CFD method has the ability to simulate coupling effects of ship motion and sloshing tank in waves.


Author(s):  
Samuel Holmes ◽  
Yiannis Constantinides

Jumpers are typically short sections of curved pipe spanning production riser elements on the sea floor. When in areas of significant currents these jumpers are subject to vortex induced vibration (VIV). The complex shape of the jumper means that numerical methods are usually needed to solve for the vibration modes of the jumper. Furthermore, the fluid flow around the jumper is also complex so that traditional methods of VIV analysis used for risers are not applicable to jumpers. Here we use a CFD code in a fully coupled analysis to predict vibration response and strain of a typical subsea jumper. A separate finite element analysis is used to calculate the eigenvalues and eigenvectors of the jumper system for input into the CFD analysis. The resulting method is economical and practical for design analyses.


Sign in / Sign up

Export Citation Format

Share Document