Performance Evaluation of an SOFC-GT Hybrid System With Ejectors for the Anode and Cathode Recirculations

Author(s):  
Jinwei Chen ◽  
Kuanying Gao ◽  
Maozong Liang ◽  
Huisheng Zhang

The ejectors used for the fuel cell recirculation are more reliable and low cost in maintenance than high-temperature blowers. In this paper, an anode and cathode recirculation scheme, equipped with ejectors, was designed in a solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The ejector model, SOFC model, and other component models and the validation were conducted to investigate the performance of the hybrid system with anode and cathode ejectors. The geometric parameters of the ejectors were designed to perform the anode and cathode recirculation loops according to the design conditions of the hybrid system with a blower-based recirculation loop. The cathode ejector geometries are much larger than the anode ejector. In addition, the sensitivity analysis of the primary fluid for the standalone anode and cathode ejectors is investigated. The results show that the ejector can recirculate more secondary fluid by reducing the ejector outlet pressure. Then, the anode and cathode ejectors were integrated into the SOFC-GT hybrid system. A blower gets involved downstream, and the compressor is necessary to avoid high expensive cost of redesigning compressor. The off-design and dynamic performance were characterized after integrating the anode and cathode ejectors into the hybrid system. The dynamic and off-design performances show that the designed ejectors are effectively integrated into the anode and cathode recirculation loops to replace the blower-based recirculation loops. The safety range of relative fuel flow rate is 0.62–1.22 in the fixed rotational speed strategy, and it is 0.53–1.1 in the variable rotational speed strategy. The variable rotational speed strategy can ensure higher system efficiency, which is more than 61% at a part-load condition.

Author(s):  
Jinwei Chen ◽  
Kuanying Gao ◽  
Maozong Liang ◽  
Huisheng Zhang

The recirculation of the anode and cathode exhaust has huge benefits on the fuel cell system, for instance, keeping proper operating conditions of the reformer and preheating the inlet air which reduces the recuperator size. Furthermore, the ejectors used for the fuel cell recirculation are more reliable and low-cost in maintenance than high temperature blowers. In this paper, an anode and cathode recirculation scheme, both equipped with ejectors, was designed in a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) hybrid system. Additionally, a blower was added between the compressor and the heat exchanger to overcome the significant pressure loss caused by the cathode ejector. This configuration separates the compressor from the fuel cell and turbine components, introducing more flexibility in system modification. The investigations were conducted to analyze the performance of the hybrid system with anode and cathode ejectors in this paper. Firstly, the ejector model was established based on the energy, mass and momentum balance equations. Furthermore, it was validated that the ejector model was consistent with the reference data. Secondly, the stand-alone performance of the anode and cathode ejectors was analyzed. The geometry parameters of the ejectors were determined based on the design conditions. Then the off-design performance was analyzed based on the designed ejectors geometry. The results show that the performance of the ejectors is greatly influenced by the inlet conditions of the primary and secondary fluid mass flow rate. Finally, the anode and cathode ejectors were integrated into the SOFC-GT hybrid system. Meanwhile, the off-design and dynamic behaviors of the whole SOFC-GT hybrid system with anode and cathode ejectors for recirculation loops were analyzed. In the end, the results show that the designed ejectors can effectively satisfy the demands of the SOFC-GT system with anode and cathode recirculation loops. And the safety range of relative fuel flow rate is from 0.42 to 1.22 when the rotator speed is constant.


2003 ◽  
Vol 125 (4) ◽  
pp. 986-993 ◽  
Author(s):  
P. Bedont ◽  
O. Grillo ◽  
A. F. Massardo

This paper addresses the off-design analysis of a hybrid system (HS) based on the coupling of an existing Ansaldo Fuel Cells (formerly Ansaldo Ricerche) molten carbonate fuel cell (MCFC) stack (100 kW) and a micro gas turbine. The MCFC stack model at fixed design conditions has previously been presented by the authors. The present work refers to an off-design stack model, taking into account the influence of the reactor layout, current density, air and fuel utilization factor, CO2 recycle loop, cell operating temperature, etc. Finally, the design and off-design model of the whole hybrid system is presented. Efficiency at part load condition is presented and discussed, taking into account all the constraints for the stack and the micro gas turbine, with particular emphasis on CO2 recycle control.


1999 ◽  
Vol 80 (1-2) ◽  
pp. 190-197 ◽  
Author(s):  
Karl Kordesch ◽  
Josef Gsellmann ◽  
Martin Cifrain ◽  
Susanne Voss ◽  
Victor Hacker ◽  
...  

Author(s):  
Gerry Agnew ◽  
Michele Bozzolo ◽  
Robert R. Moritz ◽  
Steve Berenyi

Rolls-Royce Fuel Cell Systems (RRFCS) is developing a 1MW fuel cell hybrid system package, supported by a prototype demonstration of a 250kW generator module in 2006. The ongoing design process has been focused from the early stages towards simplicity as a key to achieve the demanding cost targets for an effective market entry. This paper describes how the specifically designed components are being integrated as a system. A description of the progress against the demonstration plan is provided. The baseline plant is expected to provide excellent part-load performance in an extensive range of operating conditions, while a modular architecture guarantees availability and reliability. Finally, opportunities for further increases in efficiency and power density are discussed, as the technology evolves towards a next generation product.


Author(s):  
Maher Al-Baghdadi

Abstract The results obtained from the design and analysis of a photovoltaic-hydrogen-PEM fuel cell (PVHPEMFC) hybrid system for Najaf City in Iraq has been presented. The hybrid system consists of photovoltaic arrays coupled with an electrolyzer to produce hydrogen, a PEM fuel cell that converts chemical energy (H2) to electricity, hydrogen storage, a battery storage system, and the load. In this kind of system, all components can be connected electrically in parallel. The voltage of the PV arrays and fuel cell must be high enough to charge the battery, and the voltage of the electrolyzer must be low enough for the battery to power it during periods of low insolation. The designed system model is based on the electrical component models and variable solar radiation data depending on the location.


Author(s):  
Jamasb Pirkandi ◽  
Mohammad Ommian

This study investigated the combination of the direct and indirect hybrid systems in order to develop a combined hybrid system. In the proposed system, a direct solid oxide fuel cell (SOFC) and gas turbine (GT) hybrid system and an indirect fuel cell cycle were combined and exchanged the heat through a heat exchanger. Several electrochemical, thermal, and thermodynamic calculations were performed in order to achieve more accurate results; then, beside the parametric investigation of the abovementioned hybrid system, the obtained results were compared to the results of direct and indirect hybrid systems and simple GT cycle. Results indicate that the efficiency of the combined hybrid system was between those of the direct and indirect hybrid systems. The electrical efficiency and the overall efficiency of the combined hybrid system were 43% and 59%, respectively. The generation power in the combined hybrid system was higher than that of both other systems, which was the only advantage of using the combined hybrid system. The generation power in the combined hybrid system was higher than that of the direct hybrid system by 16%; accordingly, it is recommended to be used by the systems that are supposed to have high generation power.


2005 ◽  
Vol 3 (1) ◽  
pp. 18-25 ◽  
Author(s):  
R. A. Roberts ◽  
J. Brouwer

Hybrid fuel-cell–gas-turbine (FC/GT) systems are technologically advanced systems that are promising for electric power generation with ultralow emissions and high efficiency for a large range of power plant sizes. A good understanding of the steady-state and dynamic performance of a FC/GT system is needed in order to develop and advance this hybrid technology. In this work, a detailed dynamic model of a solid oxide fuel cell/gas turbine (SOFC/GT) system has been developed. The system that is simulated represents the 220kW SOFC/GT hybrid system developed by Siemens Westinghouse. Results of the dynamic model and experimental data gathered during the operation and testing of the 220kW SOFC/GT at the National Fuel Cell Research Center are compared and presented.


Sign in / Sign up

Export Citation Format

Share Document