Torsional Vibrations and Nonlinear Dynamic Characteristics of Drill Strings and Stick-Slip Reduction Mechanism

Author(s):  
Jialin Tian ◽  
Genyin Li ◽  
Liming Dai ◽  
Lin Yang ◽  
Hongzhi He ◽  
...  

Torsional stick–slip vibrations easily occur when the drill bit encounters a hard or a hard-soft staggered formation during drilling process. Moreover, serious stick–slip vibrations of the drill string is the main factor leading to low drilling efficiency or even causing the downhole tools failure. Therefore, establishing the stick–slip theoretical model, which is more consistent with the actual field conditions, is the key point for new drilling technology. Based on this, a new torsional vibration tool is proposed in this paper, then the multidegree-of-freedom torsional vibrations model and nonlinear dynamic model of the drill string are established. Combined with the actual working conditions in the drilling process, the stick–slip reduction mechanism of the drill string is studied. The research results show that the higher rotational speed of the top drive, smaller viscous damping of the drill bit, and smaller WOB (weight on bit) will prevent the stick–slip vibration to happen. Moreover, the new torsional vibration tool has excellent stick–slip reduction effect. The research results and the model established in this paper can provide important references for reducing the stick–slip vibrations of the drill string and improving the rock-breaking efficiency.

Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


2019 ◽  
Vol 300 ◽  
pp. 04004
Author(s):  
Edris Hassan ◽  
Jamil Abdo ◽  
Jan Kwak ◽  
Abdullah Al Shabibi

Drilling is one of the costliest activities in oil and gas industry due to the complexity of interactions with downhole rock formation. Under such conditions, the uncertainty of drillstring behaviour increase and hence it becomes difficult to predict the causes, occurrences, and types of failures. Lateral and torsional vibrations often cause failure of Bottom Hole Assembly (BHA), drillstring failure, drill bit and wall borehole damages. In this work, a model is presented to determine the impact of lateral and torsional vibrations on a drillstring during the drilling operation. The model aims to mimic real drillstring behaviour inside a wellbore with regards to its dynamic movements due to multiple real situations such as eccentricity of collars, drill pipe sections, and stick-slip phenomena occurring due to the interaction of the bit and the drillstring with the well formation. The work aims to develop a basis for determining critical operating speeds and design parameters to provide safe drilling procedures and reduce drill string fatigue failure. Lagrangian approach is used in this study to attain drillstring lateral and torsional vibration coupling equations. The nonlinear equations are solved numerically to obtain the response of the system. In this work, we also present a brief description of an in-house constructed experimental setup. The setup has the capability to imitate the downhole lateral and torsional vibration modes. Parameters from the experimental investigations are incorporated for validation of the mathematical models and for prediction of the drillstring fatigue life. Such investigations are essential for oil and gas industries as they provide solutions and recommendations about operational speed, lateral and torsional amplitudes measurements and corrections, and the conditions for avoiding occurrence of natural frequencies of the system.


2021 ◽  
Author(s):  
Mohamad Haikal Nordin ◽  
Lai Keng Looi ◽  
Pete Slagel ◽  
Mohamad Hafiz Othman ◽  
Abdul Razak Affandi ◽  
...  

Abstract Field T is well known with its multiple layers of hard stringers that can go up to 25 ksi UCS at certain intervals, predominantly in 12-1/4" and 8-1/2" hole section. This can lead to stick-slip problem whereby the drill bit momentarily stalls due to high static friction, while the drill string keeps rotating. As a result, torque will buildup in pipe until it overcomes the friction at the bit, resulting in the drill pipe unwinding itself. Over time, this issue results in reduced drilling efficiency (i.e. lower ROP), eventually causing damage to the bit or worse, twisting off the BHA, which translates into high cost exposure to the Operator. During the exploration phase, the Operator required on average, 4 to 7 bit trips to drill 12-1/4" hole section and 2 to 4 trips were required to drill 8-1/2" hole section. The most reported reason to pull out of the hole were, BHA change out, downhole tool failure (DTF) and low rate of penetration (ROP). The bits’ inner & outer cutters were also reported to be damaged with dull grading as high as wear value of 7 or 8. Z technology is a torsional vibration mitigation system that uses wide band impedance (Z) matching concept that aims to absorb all torque waves arriving at top drive by overcoming inertia of motor & gearbox. The Z Technology changes the conventional hard boundary condition of a standard top drive (TD) RPM controller that is "stiff" (constant RPM) which results in full reflection of all torsional waves. A "stiff" TD control system leads to growth of standing waves (A combination of TD constant RPM & stick-slip "unwind" RPM) in the string which eventually may lead to torsional vibrations to the drill bit and/or motor housing/BHA. While drilling Development Phase 1B, Z Technology was seen to be effective in mitigating stick-slip. As a result, more mechanical specific energy (MSE) was available to be transmitted to the bit for formation rock removal. All three wells in the Phase 1B campaign managed to achieve the highest ROP in T field. This translated into cost savings in rig time and cost avoidance to Operator due to BHA damage. The paper will discuss the details of the Z Technology mechanism, its implementation and evaluating its effectiveness in minimizing torsional vibration due to the stick-slip issue.


2019 ◽  
Vol 25 (10) ◽  
pp. 1663-1672 ◽  
Author(s):  
Fabio F. Real ◽  
Anas Batou ◽  
Thiago G. Ritto ◽  
Christophe Desceliers

This paper aims at constructing a stochastic model for the hysteretic behavior of the nonlinear bit–rock interaction of a drill string under torsional vibrations. The proposed model takes into account the fluctuations of the stick–slip oscillations observed during the drilling process. These fluctuations are modeled by introducing a stochastic process associated with the variations of the torque on bit, which is a function of the bit speed. The parameters of the stochastic model are calibrated with field data. The response of the proposed stochastic model, considering the random bit–rock interaction, is analyzed, and statistics related to the stability of the drill string are estimated.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


Author(s):  
B. Besselink ◽  
N. van de Wouw ◽  
H. Nijmeijer

Rotary drilling systems are known to exhibit torsional stick-slip vibrations, which decrease drilling efficiency and accelerate the wear of drag bits. The mechanisms leading to these torsional vibrations are analyzed using a model that includes both axial and torsional drill string dynamics, which are coupled via a rate-independent bit-rock interaction law. Earlier work following this approach featured a model that lacked two essential aspects, namely, the axial flexibility of the drill string and dissipation due to friction along the bottom hole assembly. In the current paper, axial stiffness and damping are included, and a more realistic model is obtained. In the dynamic analysis of the drill string model, the separation in time scales between the fast axial dynamics and slow torsional dynamics is exploited. Therefore, the fast axial dynamics, which exhibits a stick-slip limit cycle, is analyzed individually. In the dynamic analysis of a drill string model without axial stiffness and damping, an analytical approach can be taken to obtain an approximation of this limit cycle. Due to the additional complexity of the model caused by the inclusion of axial stiffness and damping, this approach cannot be pursued in this work. Therefore, a semi-analytical approach is developed to calculate the exact axial limit cycle. In this approach, parametrized parts of the axial limit cycle are computed analytically. In order to connect these parts, numerical optimization is used to find the unknown parameters. This semi-analytical approach allows for a fast and accurate computation of the axial limit cycles, leading to insight in the phenomena leading to torsional vibrations. The effect of the (fast) axial limit cycle on the (relatively slow) torsional dynamics is driven by the bit-rock interaction and can thus be obtained by averaging the cutting and wearflat forces acting on the drill bit over one axial limit cycle. Using these results, it is shown that the cutting forces generate an apparent velocity-weakening effect in the torsional dynamics, whereas the wearflat forces yield a velocity-strengthening effect. For a realistic bit geometry, the velocity-weakening effect is dominant, leading to the onset of torsional vibrations.


2016 ◽  
Vol 248 ◽  
pp. 85-92 ◽  
Author(s):  
Farooq Kifayat Ullah ◽  
Franklyn Duarte ◽  
Christian Bohn

A common problem in the petroleum drilling process is the torsional oscillation generated by the friction present during the cutting process. Torsional oscillations in drill string are particularly difficult to control because the drill string is an underactuated system, it has a very small diameter to length ratio and it is driven at top end with the cutting process at the other end. These factors make the drill string prone to self-excited torsional vibrations caused by the stick-slip of the cutting bit. The system is modeled as a torsional pendulum with two degrees of freedom, where the upper inertia models the top drive and also part of the drilling pipes. The bottom inertia models the bottom hole assembly (BHA). The drill is considered to be a massless torsional spring-damper. The drill string is subjected to friction, which is formulated using a dry friction model. The friction model takes into account Coulomb friction, stiction and Stribeck effect. The latter friction component is the main nonlinear phenomenon that introduces negative damping at the bit; it leads to self-enforcing stick-slip torsional oscillations.In the approach of this work, for the attenuation of these self-excited oscillations a recursive backstepping control strategy is used and it is carried out in continuous time. The main contribution of this work, which is different from the backstepping approaches reported in the literature, is to use a nonlinear/artificial damping as virtual control input. The stability of the system has been proven in the sense of Lyapunov. The goal of the proposed algorithm is to deal the underactuation of the system and to provide a good response for different operating points. The effectiveness and robustness of the controller has been tested in simulations.


Author(s):  
Omid Aminfar ◽  
Amir Khajepour

Reducing vibrations in well drilling has a significant effect on improving the overall performance of the drilling process. Vibrations may affect the drilling process in different ways, i.e., reducing durability of the drillstring’s elements, reducing the rate of penetration, and deviating the drilling direction. In rotary drilling, which is used to open mine and oil wells, torsional vibration of the drillstring is an important component of the overall system’s vibration that has received less attention in the literature. In this paper, we propose a finite element model for a sample blasthole drillstring used to open mine wells to investigate its torsional vibrations. Boundary conditions and elements’ specifications are applied to this model. In the model, the interaction between the insert and the rock is represented by a set of repetitive impulses according to the insert pattern. The steady-state response of the system to the repetitive impulses is found and natural frequencies, kinetic energy, and potential energy of the drillstring are calculated. The root mean square (RMS) of the total energy can be used as the measure for reducing the torsional vibration of the system. Finally, an optimum combination of inserts on the cone’s rows was found based on minimizing the total vibratory energy of the drillstring. The optimum design can reduce the torsional vibrations of the drillstring and improve the drilling performance.


Author(s):  
Jialin Tian ◽  
Yi Zhou ◽  
Lin Yang ◽  
Shuhui Hu

The phenomenon of stick-slip vibration is widespread in the exploration of deep and ultra-deep wells. It causes the reduction of the mechanical drilling rate and wastes the driving energy. Besides, it also accelerates the aging and failure of the drill strings and threatens the safety of drilling seriously. In order to effectively control the stick-slip vibration of the drill string, a new type of torsional vibration tool is proposed in this paper firstly. Then, the theoretical model of the drill string system based on the tool is established. And then, the viscosity reduction characteristics of the new torsional vibration tool are studied by the PID control method. Finally, field tests were carried out in comparison with simulation. The results show that the new torsional vibration tool can reduce the stick-slip vibration. And the two PID control equations can both control the drill bit speed in real time through changing the turntable speed. The results also have important reference significance for reducing and controlling the stick-slip vibration of the drill string and improving the rock-breaking efficiency.


Sign in / Sign up

Export Citation Format

Share Document