Torsional Vibration Analysis of Drillstrings in Blasthole Drilling
Reducing vibrations in well drilling has a significant effect on improving the overall performance of the drilling process. Vibrations may affect the drilling process in different ways, i.e., reducing durability of the drillstring’s elements, reducing the rate of penetration, and deviating the drilling direction. In rotary drilling, which is used to open mine and oil wells, torsional vibration of the drillstring is an important component of the overall system’s vibration that has received less attention in the literature. In this paper, we propose a finite element model for a sample blasthole drillstring used to open mine wells to investigate its torsional vibrations. Boundary conditions and elements’ specifications are applied to this model. In the model, the interaction between the insert and the rock is represented by a set of repetitive impulses according to the insert pattern. The steady-state response of the system to the repetitive impulses is found and natural frequencies, kinetic energy, and potential energy of the drillstring are calculated. The root mean square (RMS) of the total energy can be used as the measure for reducing the torsional vibration of the system. Finally, an optimum combination of inserts on the cone’s rows was found based on minimizing the total vibratory energy of the drillstring. The optimum design can reduce the torsional vibrations of the drillstring and improve the drilling performance.