Thermal Performance Intensification of Car Radiator using SiO2/Water and ZnO/Water Nanofluids
Abstract Recent progress in nanotechnology has lead to a revolution in the automotive cooling system. In the present work, enhancement of car radiator thermal performance was investigated using different nanofluids named SiO2/water, ZnO/water nanofluids as cooling mediums. The present study mainly aims to investigate the impact of (5 wt.%) from SiO2 and ZnO nanoparticles (NPs) dispersed in water based on car radiator heat transfer with spherical and hexagonal morphology, respectively. The experiments were performed in two working conditions of the nanofluids i.e coolant temperature and volume flow rate, moreover the present results were compared with the previous studies. The experimental working conditions were set at coolant inlet temperature (tc,i) ranged from 45 oC to 80 oC and the coolant volume flow rate (V) ranged from 3.5 lit/min to 6.5 lit/min. The experimental results show that the hexagonal ZnO/water nanofluid was superior towards enhancement of car radiator thermal performance comparing to that of SiO2 NPs. Additionally, at 6.5 lit/min and 45 °C, the enhancements of car radiator effectiveness due to using SiO2 and ZnO based water nanofluids and compared with that for the based water were 13.9% and 16%, respectively. The present study used the multiple regression analysis (MRA) and hence empirical correlations are suggested to estimate the overall heat transfer coefficient (U) for all coolants as functions of volume flow rate (V) and the coolant inlet temperature (tc,i) with a maximum STDEV of ± 1.85%.