A Novel Method to Enhance Oil Recovery by Inter-fracture Injection and Production through the Same Multi-fractured Horizontal Well

2021 ◽  
pp. 1-19
Author(s):  
Youwei He ◽  
Yu Qiao ◽  
Jiazheng Qin ◽  
Yong Tang ◽  
Yong Wang ◽  
...  

Abstract Conventional enhanced oil recovery (EOR) approaches are inefficient in the unconventional reservoirs. This paper provides a novel approach to enhance oil recovery from unconventional oil reservoirs through synchronous inter-fracture injection and production (SiFIP) and asynchronous inter-fracture injection and production (AiFIP). The compartmental embedded discrete fracture model (cEDFM) is introduced to simulate complex fracture geometries to quantitatively evaluate the performance of SiFIP and AiFIP. EOR performances using multiple producing methods are investigated (i.e., depletion, fluid flood, fluid Huff and Puff, SiFIP, AiFIP. Higher cumulative oil production rates can be achieved by AiFIP and SiFIP. AiFIP yields the highest oil recovery factor, two times higher than depletion. Compared with SiFIP, AiFIP may be a preferred method when CO2/water resources are short. The impacts of fracture and injection parameters on oil production are discussed. The feasible well completions for AiFIP and SiFIP are provided. AiFIP (CO2) achieves the best EOR performance among different producing methods. This paper demonstrates the feasibility of SiFIP and AiFIP to improve oil recovery. The proposed methods improve flooding performance by transforming fluid injection among wells to among hydraulic fractures from the same Multi-fractured horizontal well (MFHW), which is a promising EOR approach in unconventional oil reservoirs. The proposed EOR method (AiFIP-CO2) can improve the oil recovery, and mitigate the emission of CO2 as well as reduce the waste of water resources.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 446 ◽  
Author(s):  
Lei Zhang ◽  
Nasir Khan ◽  
Chunsheng Pu

Due to the strong heterogeneity between the fracture and the matrix in fractured oil reservoirs, injected water is mainly moved forward along the fracture, which results in poor water flooding. Therefore, it is necessary to reduce the water cut and increase oil production by using the conformance control technology. So far, gel particles and partially hydrolyzed polyacrylamide (HPAM)/Cr3+ gel are the most common applications due to their better suitability and low price. However, either of the two alone can only reduce the conductivity of the fracture to a certain extent, which leads to a poor effect. Therefore, to efficiently plug the fracture to enhance oil recovery, a combination of gel particles and the HPAM/Cr3+ system is used by laboratory tests according to their respective advantages. The first step is that the gel particles can compactly and uniformly cover the entire fracture and then the fracture channel is transformed into the gel particles media. This process can enhance the oil recovery to 18.5%. The second step is that a suitable HPAM/Cr3+ system based on the permeability of the gel particles media is injected in the fractured core. Thus, the fracture can be completely plugged and the oil in the matrix of the fractured core can be displaced by water flooding. This process can enhance oil recovery to 10.5%. During the whole process, the oil recovery is increased to 29% by this method. The results show that this principle can provide a new method for the sustainable and efficient development of fractured oil reservoirs.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2724 ◽  
Author(s):  
Long Ren ◽  
Wendong Wang ◽  
Yuliang Su ◽  
Mingqiang Chen ◽  
Cheng Jing ◽  
...  

There are multiporosity media in tight oil reservoirs after stimulated reservoir volume (SRV) fracturing. Moreover, multiscale flowing states exist throughout the development process. The fluid flowing characteristic is different from that of conventional reservoirs. In terms of those attributes of tight oil reservoirs, considering the flowing feature of the dual-porosity property and the fracture network system based on the discrete-fracture model (DFM), a mathematical flow model of an SRV-fractured horizontal well with multiporosity and multipermeability media was established. The numerical solution was solved by the finite element method and verified by a comparison with the analytical solution and field data. The differences of flow regimes between triple-porosity, dual-permeability (TPDP) and triple-porosity, triple-permeability (TPTP) models were identified. Moreover, the productivity contribution degree of multimedium was analyzed. The results showed that for the multiporosity flowing states, the well bottomhole pressure drop became slower, the linear flow no longer arose, and the pressure wave arrived quickly at the closed reservoir boundary. The contribution ratio of the matrix system, natural fracture system, and network fracture system during SRV-fractured horizontal well production were 7.85%, 43.67%, and 48.48%, respectively in the first year, 14.60%, 49.23%, and 36.17%, respectively in the fifth year, and 20.49%, 46.79%, and 32.72%, respectively in the 10th year. This study provides a theoretical contribution to a better understanding of multiscale flow mechanisms in unconventional reservoirs.


2014 ◽  
Vol 962-965 ◽  
pp. 489-493
Author(s):  
Zhi Qiang Li ◽  
Yong Quan Hu ◽  
Wen Jiang Xu ◽  
Jin Zhou Zhao ◽  
Jian Zhong Liu ◽  
...  

This article presents a new exploitation method based on the same fractured horizontal well with fractures for injection or production on offshore low permeability oilfields for the purpose of adapting to their practical situations and characteristics, which means fractures close to the toe of horizontal well used for injecting water and fractures near the heel of horizontal well used for producing oil. According to proposed development mode of fracturing, relevant physical model is established, Then reservoir numerical simulation method has been applied to study the effect of arrangement pattern of injection and production fractures, fracture conductivity, fracture length on oil production. Research indicates cumulative oil production is much higher by employing the middle fracture for injecting water compared with using the remote one, suggesting that the middle fracture adopted for injecting water, and hydraulic fracture length and conductivity have been optimized. The proposed development pattern of a staged fracturing for horizontal wells with some fractures applied for injecting water and others for production based on the same horizontal well provides new thoughts for offshore oilfields exploitation.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Huang Zhiyu ◽  
Lu Hongsheng ◽  
Zhang Tailiang

Abstract In order to enhance oil recovery in high-temperature and high-salinity oil reservoirs, the copolymeric microspheres containing acrylamide (AM), acrylonitrile (AN) and AMPS was synthesized by inverse suspension polymerization. The copolymeric microsphere was very uniform and the size could be changed according to the condition of polymerization. The lab-scale studies showed that the copolymeric microsphere exhibit good salt-tolerance and thermal-stability when immersed in 20×105 mg/L NaCl(or KCl) solution, 7500 mg/L CaCl2 (or MgCl2) solution or 2000 mg/L FeCl3 solution, respectively. The copolymeric microsphere showed satisfactory absorbency rates. The sand-pipes experiments confirmed that the average toughness index was 1.059. It could enhance the oil recovery by about 3% compared with the corresponding irregular copolymeric particle.


2021 ◽  
Author(s):  
Jasmine Shivani Medina ◽  
Iomi Dhanielle Medina ◽  
Gao Zhang

Abstract The phenomenon of higher than expected production rates and recovery factors in heavy oil reservoirs captured the term "foamy oil," by researchers. This is mainly due to the bubble filled chocolate mousse appearance found at wellheads where this phenomenon occurs. Foamy oil flow is barely understood up to this day. Understanding why this unusual occurrence exists can aid in the transfer of principles to low recovery heavy oil reservoirs globally. This study focused mainly on how varying the viscosity and temperature via pressure depletion lab tests affected the performance of foamy oil production. Six different lab-scaled experiments were conducted, four with varying temperatures and two with varying viscosities. All experiments were conducted using lab-scaled sand pack pressure depletion tests with the same initial gas oil ratio (GOR). The first series of experiments with varying temperatures showed that the oil recovery was inversely proportional to elevated temperatures, however there was a directly proportional relationship between gas recovery and elevation in temperature. A unique observation was also made, during late-stage production, foamy oil recovery reappeared with temperatures in the 45-55°C range. With respect to the viscosities, a non-linear relationship existed, however there was an optimal region in which the live-oil viscosity and foamy oil production seem to be harmonious.


2021 ◽  
Author(s):  
Lijuan Huang ◽  
Zongfa Li ◽  
Shaoran Ren ◽  
Yanming Liu

Abstract The technology of air injection has been widely used in the second and tertiary recovery in oilfields. However, due to the injected air and natural gas will explode, the safety of the gas injection technology has attracted much attention. Gravity assisted oxygen-reduced air flooding is a new method that eliminates explosion risks and improves oil recovery in large-dip oil reservoirs or thick oil layers. The explosion limit data of different components of natural gas under high pressure were obtained through explosion experiments, which verified the suppression effect of oxygen-reduced air on explosions. The influence of natural gas composition and concentration on explosion limits was also investigated. In addition, a rotatable displacement device was used to study the feasibility of gravity assisted oxygen-reduced air injection for improving the heavy oil reservoirs recovery. Under pressure and temperature conditions of 20MPa and 371K, the sand-filled gravity flooding experiments with different dip angles were carried out using oxygen-reduced air with an oxygen content of 8%. The results show that with the increase of the reservoir dip, the pore volume of the injected fluid at the gas channeling point, the efficient development time of gas injection, and the final displacement efficiency of gas injection development all increase through gravity stabilization caused by gravity differentiation. In the presence of a dip angle, the cumulative oil production before the gas breakthrough point exceeded 80% of the oil production during the entire production process, indicating that gravity assisted oxygen-reduced air flooding is an effective and safe improving oil recovery method. Finally, the explosion risk of each link of the air injection process is analyzed, and the high-risk area and the low-risk area are determined.


2019 ◽  
Vol 7 (5) ◽  
pp. 1485-1503 ◽  
Author(s):  
Yu‐long Zhao ◽  
Ling‐fu Liu ◽  
Lie-hui Zhang ◽  
Xu‐Yang Zhang ◽  
Bo Li

2013 ◽  
Vol 16 (01) ◽  
pp. 60-71 ◽  
Author(s):  
Sixu Zheng ◽  
Daoyong Yang

Summary Techniques have been developed to experimentally and numerically evaluate performance of water-alternating-CO2 processes in thin heavy-oil reservoirs for pressure maintenance and improving oil recovery. Experimentally, a 3D physical model consisting of three horizontal wells and five vertical wells is used to evaluate the performance of water-alternating-CO2 processes. Two well configurations have been designed to examine their effects on heavy-oil recovery. The corresponding initial oil saturation, oil-production rate, water cut, oil recovery, and residual-oil-saturation (ROS) distribution are examined under various operating conditions. Subsequently, numerical simulation is performed to match the experimental measurements and optimize the operating parameters (e.g., slug size and water/CO2 ratio). The incremental oil recoveries of 12.4 and 8.9% through three water-alternating-CO2 cycles are experimentally achieved for the aforementioned two well configurations, respectively. The excellent agreement between the measured and simulated cumulative oil production indicates that the displacement mechanisms governing water-alternating-CO2 processes have been numerically simulated and matched. It has been shown that water-alternating-CO2 processes implemented with horizontal wells can be optimized to significantly improve performance of pressure maintenance and oil recovery in thin heavy-oil reservoirs. Although well configuration imposes a dominant impact on oil recovery, the water-alternating-gas (WAG) ratios of 0.75 and 1.00 are found to be the optimum values for Scenarios 1 and 2, respectively.


Sign in / Sign up

Export Citation Format

Share Document