Design of Low-Cost Endoscope Based On Novel Wire-Driven Rotary Valve and Water-Jet Mechanism
Abstract To improve the prevalence of screening for gastric cancer in low-income areas, a low-cost endoscope based on a novel wire-driven rotary valve and water-jet mechanism is proposed. The primary component of this endoscope is a rotary valve whose core is driven by a step motor through a flexible wire, which controls the direction of the water jet. This enables it to reach any point in the workspace by controlling the valve core angle and water jet intensity. The envelope surface of the endoscope tip trajectory is likely a hemisphere. The horizontal diameter of the working space projection is approximately 350 mm, which is sufficient to observe most parts of the greater curvature of the stomach. The image-acquisition performance of the designed endoscope was satisfactory in a phantom experiment. The introduction of the novel rotary valve greatly simplifies the structure and reduces the cost of the proposed endoscope. With low cost and high portability, this endoscope provides a good alternative for early gastric cancer screening in low- and middle-income areas.