Aerodynamic Functional Diagnostics Based on Angular Momentum Transport Lines

2021 ◽  
Vol 144 (3) ◽  
Author(s):  
Xiang IA Yang ◽  
Vishal Jariwala ◽  
Haosen HA Xu ◽  
Louis Larosiliere

Abstract In analogy with the classical concept of mass-flux-based streamlines, we define angular momentum transport (AMT) lines as an aerodynamic functional diagnostic tool. The AMT lines are the ones whose tangents are given by the average angular momentum flux. The mathematical and physical properties of these AMT lines are exploited to study the generation, removal, and transport of angular momentum in turbomachinery components. We illustrate the concept by visualizing AMT lines in two relatively simple flows, namely, vaneless incompressible diffuser and von Karman flow (a model of centrifugal compressors). Next, we apply the proposed diagnostic tool to flow in a return channel. A return channel is a part of a multistage centrifugal compressor stage. Its principal function is to remove angular momentum. In this work, we apply the diagnostic tool of AMT lines to a Reynolds-averaged Navier Stokes (RANS) simulation and a wall-modeled large eddy simulation (LES) of flow in the return channel. We show that AMT lines give us insights into the AMT process that are otherwise not available with conventional visualization tools.

2021 ◽  
Author(s):  
Xiang I. A. Yang ◽  
Vishal Jariwala ◽  
Haosen H. A. Xu ◽  
Louis Larosiliere

Abstract In analogy with the classical concept of mass-flux-based streamlines, we define Angular Momentum Transport (AMT) lines as an aerodynamic functional diagnostic tool. The AMT lines are the ones whose tangents are given by the average angular momentum flux. The mathematical and physical properties of these AMT lines are exploited to study the generation, removal, and transport of angular momentum in turbomachinery components. We illustrate the concept by visualizing AMT lines in two relatively simple flows, namely, vaneless incompressible diffuser and von Karman flow (a model of centrifugal compressors). Next, we apply the proposed diagnostic tool to flow in a return channel. A return channel is a part of a multistage centrifugal compressor stage. Its principal function is to remove angular momentum. In this work, we apply the diagnostic tool of AMT lines to a Reynolds averaged Navier Stokes simulation (RANS) and a wall-modeled large eddy simulation (LES) of flow in the return channel. We show that AMT lines give us insights into the angular momentum transport process that are otherwise not available with conventional visualization tools.


2001 ◽  
Vol 200 ◽  
pp. 410-414
Author(s):  
Günther Rüdiger ◽  
Udo Ziegler

Properties have been demonstrated of the magneto-rotational instability for two different applications, i.e. for a global spherical model and a box simulation with Keplerian background shear flow. In both nonlinear cases a dynamo operates with a negative (positive) α-effect in the northern (southern) disk hemisphere and in both cases the angular momentum transport is outwards. Keplerian accretion disks should therefore exhibit large-scale magnetic fields with a dipolar geometry of the poloidal components favoring jet formation.


2020 ◽  
Vol 641 ◽  
pp. A133
Author(s):  
N. Scepi ◽  
G. Lesur ◽  
G. Dubus ◽  
J. Jacquemin-Ide

Context. Dwarf novæ (DNe) and low mass X-ray binaries (LMXBs) show eruptions that are thought to be due to a thermal-viscous instability in their accretion disk. These eruptions provide constraints on angular momentum transport mechanisms. Aims. We explore the idea that angular momentum transport could be controlled by the dynamical evolution of the large-scale magnetic field. We study the impact of different prescriptions for the magnetic field evolution on the dynamics of the disk. This is a first step in confronting the theory of magnetic field transport with observations. Methods. We developed a version of the disk instability model that evolves the density, the temperature, and the large-scale vertical magnetic flux simultaneously. We took into account the accretion driven by turbulence or by a magnetized outflow with prescriptions taken, respectively, from shearing box simulations or self-similar solutions of magnetized outflows. To evolve the magnetic flux, we used a toy model with physically motivated prescriptions that depend mainly on the local magnetization β, where β is the ratio of thermal pressure to magnetic pressure. Results. We find that allowing magnetic flux to be advected inwards provides the best agreement with DNe light curves. This leads to a hybrid configuration with an inner magnetized disk, driven by angular momentum losses to an MHD outflow, sharply transiting to an outer weakly-magnetized turbulent disk where the eruptions are triggered. The dynamical impact is equivalent to truncating a viscous disk so that it does not extend down to the compact object, with the truncation radius dependent on the magnetic flux and evolving as Ṁ−2/3. Conclusions. Models of DNe and LMXB light curves typically require the outer, viscous disk to be truncated in order to match the observations. There is no generic explanation for this truncation. We propose that it is a natural outcome of the presence of large-scale magnetic fields in both DNe and LMXBs, with the magnetic flux accumulating towards the center to produce a magnetized disk with a fast accretion timescale.


1996 ◽  
Vol 171 ◽  
pp. 405-405 ◽  
Author(s):  
S. von Linden ◽  
J. Heidt ◽  
H.P. Reuter ◽  
R. Wielebinski

The large-scale dynamics and evolution of disk galaxies is controlled by the angular-momentum transport provided by non-axisymmetric perturbances through their gravity torques. To continuously maintain such gravitational instabilities, the presence of the gas component and its dissipative character are essential.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 661-666
Author(s):  
Othman Benomar ◽  
Masao Takata ◽  
Hiromoto Shibahashi ◽  
Tugdual Ceillier ◽  
Rafael A. García

AbstractThe rotation rates in the interior and at the surface is determined for the 22 main-sequence stars with masses between 1.0 and 1.6 M⊙. The average interior rotation is measured using asteroseismology, while the surface rotation is measured by the spectroscopic v sin i or the periodic light variation due to surface structures, such as spots. It is found that the difference between the surface rotation rate determined by spectroscopy and the average rotation rate for most of stars is small enough to suggest that an efficient process of angular momentum transport operates during and/or before the main-sequence stage of stars. By comparing the surface rotation rate measured from the light variation with those measured by spectroscopy, we found hints of latitudinal differential rotation. However, this must be confirmed by a further study because our result is sensitive to a few data points.


Sign in / Sign up

Export Citation Format

Share Document