The Effects of Axisymmetric Convergent Contouring and Blowing Ratio On Endwall Film Cooling and Vane Pressure Side Surface Phantom Cooling Performance

Author(s):  
Bo Bai ◽  
Zhigang Li ◽  
Jun Li ◽  
Shuo Mao ◽  
Wing Ng

Abstract In this paper, a detailed numerical investigation on the endwall film cooling and vane pressure side surface phantom cooling was performed, at the simulated realistic gas turbine operating conditions (high inlet freestream turbulence level of 16 %, exit Mach number of 0.85 and exit Reynolds number of 1.7×106). Based on a double coolant temperature model, a novel numerical method for the predictions of adiabatic wall film cooling effectiveness was proposed. This numerical method was validated by comparing the predicted results with experimental data of endwall Nusselt number, endwall film cooling effectiveness and near endwall flow visualization. The results indicate that the present numerical method can accurately predict endwall thermal load distributions and endwall film cooling distributions, and vane surface phantom cooling distributions. The endwall heat transfer coefficient, endwall film cooling effectiveness, phantom cooling effectiveness of the vane pressure side surface and total pressure loss coefficients (TPLC) were predicted and compared for two endwall contouring shapes (flat endwall and axisymmetric convergent contoured endwall) at three different blowing ratios (low blowing ratio of BR=1.0, design blowing ratio of BR=2.5 and high blowing ratio of BR=3.5) with a constant density ratio of DR=1.2, based on the present novel numerical method.

2021 ◽  
Author(s):  
Izhar Ullah ◽  
Sulaiman M. Alsaleem ◽  
Lesley M. Wright ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This work is an experimental study of film cooling effectiveness on a blade tip in a stationary, linear cascade. The cascade is mounted in a blowdown facility with controlled inlet and exit Mach numbers of 0.29 and 0.75, respectively. The free stream turbulence intensity is measured to be 13.5 % upstream of the blade’s leading edge. A flat tip design is studied, having a tip gap of 1.6%. The blade tip is designed to have 15 shaped film cooling holes along the near-tip pressure side (PS) surface. Fifteen vertical film cooling holes are placed on the tip near the pressure side. The cooling holes are divided into a 2-zone plenum to locally maintain the desired blowing ratios based on the external pressure field. Two coolant injection scenarios are considered by injecting coolant through the tip holes only and both tip and PS surface holes together. The blowing ratio (M) and density ratio (DR) effects are studied by testing at blowing ratios of 0.5, 1.0, and 1.5 and three density ratios of 1.0, 1.5, and 2.0. Three different foreign gases are used to create density ratio effect. Over-tip flow leakage is also studied by measuring the static pressure distributions on the blade tip using the pressure sensitive paint (PSP) measurement technique. In addition, detailed film cooling effectiveness is acquired to quantify the parametric effect of blowing ratio and density ratio on a plane tip design. Increasing the blowing ratio and density ratio resulted in increased film cooling effectiveness at all injection scenarios. Injecting coolant on the PS and the tip surface also resulted in reduced leakage over the tip. The conclusions from this study will provide the gas turbine designer with additional insight on controlling different parameters and strategically placing the holes during the design process.


Author(s):  
Dong-Ho Rhee ◽  
Young Seok Kang ◽  
Bong Jun Cha ◽  
Sanga Lee

Most of the optimization researches on film cooling have dealt with adiabatic film cooling effectiveness on the surface. However, the information on the overall cooling effectiveness is required to estimate exact performance of the optimization configuration since hot components such as nozzle guide vane have not only film cooling but also internal cooling features such as rib turbulators, jet impingement and pin-fins on the inner surface. Our previous studies [1,2] conducted the hole arrangement optimization to improve adiabatic film cooling effectiveness values and uniformity on the pressure side surface of the nozzle guide vane. In this study, the overall cooling effectiveness values were obtained at various cooling mass flow rates experimentally for the baseline and the optimized hole arrangements proposed by the previous study [1] and compared with the adiabatic film cooling effectiveness results. The tests were conducted at mainstream exit Reynolds number based on the chord of 2.2 × 106 and the coolant mass flow rate from 5 to 10% of the mainstream. For the experimental measurements, a set of tests were conducted using an annular sector transonic turbine cascade test facility in Korea Aerospace Research Institute. To obtain the overall cooling effectiveness values on the pressure side surface, the additive manufactured nozzle guide vane made of polymer material and Inconel 718 were installed and the surface temperature was measured using a FLIR infrared camera system. Since the optimization was based on the adiabatic film cooling effectiveness, the regions with rib turbulators and film cooling holes show locally higher overall cooling effectiveness due to internal convection and conduction, which can cause non-uniform temperature distributions. Therefore, the optimization of film cooling configuration should consider the effect of the internal cooling to avoid undesirable non-uniform cooling.


2014 ◽  
Vol 521 ◽  
pp. 104-107
Author(s):  
Ling Zhang ◽  
Quan Heng Jin ◽  
Da Fei Guo

The Realizable k-ε turbulence model was performed to investigate the film cooling effectiveness with different blowing ratio 1,1.5,2 and different density ratio 1,1.5,2.The results show that, cooling effectiveness increases with the augment of blowing ratio. On the pressure side, cooling effectiveness increases with the augment of density ratio. On the suction side, with higher density ratio the leading edge cooling increases, the middle section reduces, and the trailing edge cooling effectiveness increases first decreases.


Author(s):  
Yi Lu ◽  
Yinyi Hong ◽  
Zhirong Lin ◽  
Xin Yuan

Detailed film cooling effectiveness distributions were experimentally obtained on a turbine vane platform within a linear cascade. Testing was done in a large scale five-vane cascade with low freestream Renolds number condition 634,000 based on the axial chord length and the exit velocity. The detailed film-cooling effectiveness distributions on the platform were obtained using pressure sensitive paint technique. Two film-cooling hole configurations, cylindrical and fan-shaped, were used to cool the vane surface with two rows on pressure side, two rows on suction side and three rows on leading edge. For cylindrical holes, the blowing ratio of the coolant through the discrete cooling holes on pressure side and suction side ranged from 0.3 to 1.5 (based on the inlet mainstream velocity) while the blowing ratio ranging from 0.15 to 1.5 on leading edge; for fan-shaped holes, the four blowing ratios were 0.5, 1.0, 1.5 and 2.0. Results showed that average film-cooling effectiveness decreased with increasing blowing rate for the cylindrical holes, while the fan-shaped passage showed increased film-cooling effectiveness with increasing blowing ratio, indicating the fan-shaped cooling holes helped to improve film-cooling effectiveness by reducing overall jet liftoff. Fan-shaped holes improved average film-cooling effectiveness by 93.2%, 287.6% and 489.6% on pressure side, −4.1%, 27.9% and 78.2% on suction side over cylindrical holes at the blowing ratio of 0.5, 1.0 and 1.5 respectively. Numerical results were used to analyze the details of the flow and heat transfer on the cooling area with two turbulence models. Results demonstrated that tendency of the film cooling effectiveness distribution of numerical calculation and experimental measurement was generally consistent at different blowing ratio.


Author(s):  
S. Rodri´guez ◽  
S. Kersten ◽  
H. A. Zuniga ◽  
J. C. Ling ◽  
J. S. Kapat

Over the last decades, researchers have investigated many aspects of film cooling. The present study investigates the impact of stagnation region created by a downstream airfoil on endwall film cooling effectiveness. Experimental measurements are presented for a single row of cylindrical holes inclined at 35° with hole length to diameter ratio, L/D = 7.5, pitch to diameter ratio, PI/D = 3 with a constant density ratio of 1.26 and with nitrogen as the coolant. Five different configurations were studied. Configuration 0 is the baseline, this configuration consist of a single row of cylindrical holes. Configuration I-III consisted of an airfoil positioned downstream of the injection point at x/D = 6.4, 12.7 and 25.4. The presence of wake is also investigated on configuration IV. This configuration in addition to the airfoil, also has a wake plate at x/D = −12.7, upstream of the injection location. The experimental data shows that slightly higher averaged effectiveness values are observed for configuration I for low blowing ratios. Configuration III average effectiveness is higher for mid and high blowing ratios. For all configurations, the average effectiveness increase with increasing blowing ratio at a x/D further downstream of the injection point where the jet has reattached. Higher blowing ratio increase lateral spreading of the jet promoting jet to jet interaction and mainstream interaction enhancing mixing.


Author(s):  
Qingzong Xu ◽  
Qiang Du ◽  
Pei Wang ◽  
Xiangtao Xiao ◽  
Jun Liu

The aerothermal performance of interrupted slot and film holes was numerically investigated. Previous study indicates that the interrupted slot performs better compared to the conventional slot. In the meanwhile, the step formed along with the interrupted slot affects the film cooling characteristics. In this article, a row of film holes is arranged downstream of the step, and the mass flow rate for the interrupted slot is constant at 1%. Blowing ratio (BR) from 0.5 to 1.5 and density ratio from 1 to 2 were studied for the film holes. Endwall film cooling effectiveness distribution indicates that film cooling is easily affected by the secondary flow inside passage and the upstream step. Coolant traces are split into two parts due to the effects of step vortex and transverse flow. For different density ratios, increasing BR shows a different trend of film cooling effectiveness due to the variation of coolant momentum. The coolant jet is easily affected by the secondary flow when its momentum is low, but tends to liftoff when its momentum is too high. As a result, it is better to position the film holes far away from the upstream step. The total pressure loss coefficient distribution at the passage exit indicates that the coolant injection increases the total pressure loss. But density ratio has smaller effect on the loss variation. Besides, two axial positions of cooling holes were studied to improve the endwall cooling performance. Without the effect of step vortex, the film effectiveness of cooling holes is improved.


Author(s):  
JeongJu Kim ◽  
Wonjik Seo ◽  
Minho Bang ◽  
Seon Ho Kim ◽  
Seok Min Choi ◽  
...  

Film cooling effectiveness and heat transfer were measured in squealer tip configurations on the blade tip surface. Three different shelf squealer tip geometries were studied: conventional, vertical, and inclined. The experiment was carried out in a wind tunnel with an inlet mainstream Reynolds number, based on the axial chord length of the blade, of 140,000. The experiments were conducted in five blades in linear cascade with an averaged turbulence intensity of 8.5%. The film cooling effectiveness and heat transfer coefficient on the tip surface were obtained using the transient IR thermography technique. For the pressure side film cooling holes, averaging blowing ratios (M) of 1.0 and 2.0 were set. The results showed the film cooling effectiveness distributions on the tip surface. Owing to the mainstream, the cooling effect appeared after x/Cx = 0.15 and the film cooling effectiveness tended to increase toward downstream of the trailing edge. Additionally, the heat transfer distributions were investigated regarding the film cooling holes. In the presence of film cooling holes, the heat transfer distribution had more uniformity than without them on the pressure side. As the blowing ratio increased from 1 to 2, the heat transfer was decreased on the tip surface. The heat transfer ratio represented the change of heat transfer distribution with and without film cooling holes. Those of results were compared in three squealer tip geometries. The overall area-averaged net heat flux reduction (NHFR) levels on the tip surface were enhanced as the blowing ratio increased. The NHFR of the shelf squealer tip configurations was better than that with the conventional squealer tip.


Author(s):  
Onieluan Tamunobere ◽  
Sumanta Acharya

This is the first in a two-part series of an experimental film cooling study conducted on the tip of a turbine blade with a blade rotation speed of 1200 RPM. In this part of the study, the coolant is injected from the blade tip and pressure side (PS) holes, and the effect of the blowing ratio on the heat transfer coefficient and film cooling effectiveness of the blade tip is investigated. The blade has a tip clearance of 1.7% of the blade span and consists of a cut back squealer rim, two cylindrical tip holes and six shaped pressure side holes. The stator-rotor-stator test section is housed in a closed loop wind tunnel that allows for the performance of transient heat transfer tests. Measurements of the heat transfer coefficient and film cooling effectiveness are done on the blade tip using liquid crystal thermography. These measurements are reported for the no coolant case and for blowing ratios of 1.0, 1.5, 2.0, 3.0 and 4.0. The heat transfer results for the no coolant injection show a region of high heat transfer on the blade tip near the blade leading edge region as the incident flow impinges on that region. This region of high heat transfer extends and stretches on the tip as more coolant is introduced through the tip holes at higher blowing ratios. The cooling results show that increasing the blowing ratio increases the film cooling effectiveness. The tip film cooling profile is such that the tip coolant is pushed towards the blade suction side thereby providing better coverage in that region. The shift in coolant flow profile towards the blade suction side as opposed to the pressure side in stationary studies can primarily be attributed to the effects of the blade relative motion.


Author(s):  
S. Naik ◽  
J. Krueckels ◽  
M. Gritsch ◽  
M. Schnieder

This paper investigates the aerodynamic and film cooling effectiveness characteristics of a first stage turbine high lift guide vane and its corresponding downstream blade. The vane and blade geometrical profiles and operating conditions are representative of that normally found in a heavy-duty gas turbine. Both the vane and the blade airfoils consist of multi-row film cooling holes located at various axial positions along the airfoil chord. The film cooling holes are geometrically three-dimensional in shape and depending on the location on the airfoil; they can be either symmetrically fan shaped or non-symmetrically fan shaped. Additionally the film cooling holes can be either compounded or in-line with the external flow direction. Numerical studies and experimental investigations in a linear cascade have been conducted at vane and blade exit isentropic Mach number of 0.8. The influence of the coolant flow ejected from the film cooling holes has been investigated for both the vane and the blade profiles. For the nozzle guide vane, the measured film cooling effectiveness compared well with the predictions, especially on the pressure side. The suction side film cooling effectiveness, which consisted of two pre-throat film rows, proved very effective up-to the suction side trailing edge. For the blade, there was a reasonable comparison between the measured and predicted film cooling effectiveness. Again the blade pre-throat fan shaped cooling holes proved very effective up-to the suction side trailing edge. For the vane, the impact of varying the blowing ratios showed a strong variation in the film cooling effectiveness on the pressure side. However, on the blade, the effect of varying the blowing ratio had a greater impact on the suction side film effectiveness compared to the pressure side.


2011 ◽  
Vol 134 (3) ◽  
Author(s):  
Diganta P. Narzary ◽  
Kuo-Chun Liu ◽  
Akhilesh P. Rallabandi ◽  
Je-Chin Han

Adiabatic film-cooling effectiveness is examined on a high-pressure turbine blade by varying three critical engine parameters, viz., coolant blowing ratio, coolant-to-mainstream density ratio, and freestream turbulence intensity. Three average coolant blowing ratios (BR=1.2, 1.7, and 2.2 on the pressure side and BR=1.1, 1.4, and 1.8 on the suction side), three average coolant density ratios (DR=1.0, 1.5, and 2.5), and two average freestream turbulence intensities (Tu=4.2% and 10.5%) are considered. Conduction-free pressure sensitive paint (PSP) technique is adopted to measure film-cooling effectiveness. Three foreign gases—N2 for low density, CO2 for medium density, and a mixture of SF6 and argon for high density are selected to study the effect of coolant density. The test blade features two rows of cylindrical film-cooling holes on the suction side (45 deg compound), 4 rows on the pressure side (45 deg compound) and 3 around the leading edge (30 deg radial). The inlet and the exit Mach numbers are 0.24 and 0.44, respectively. The Reynolds number of the mainstream flow is 7.5×105 based on the exit velocity and blade chord length. Results suggest that the PSP is a powerful technique capable of producing clear and detailed film-effectiveness contours with diverse foreign gases. Large improvement on the pressure side and moderate improvement on the suction side effectiveness is witnessed when blowing ratio is raised from 1.2 to 1.7 and 1.1 to 1.4, respectively. No major improvement is seen thereafter with the downstream half of the suction side showing drop in effectiveness. The effect of increasing coolant density is to increase effectiveness everywhere on the pressure surface and suction surface except for the small region on the suction side, xss/Cx<0.2. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of the suction side where significant improvement in effectiveness is seen.


Sign in / Sign up

Export Citation Format

Share Document