Differences in petrophysical and mechanical properties between low- and middle-rank coal subjected to liquid nitrogen cooling in coalbed methane mining

2021 ◽  
pp. 1-10
Author(s):  
Menglin Du ◽  
Feng Gao ◽  
Chengzheng Cai ◽  
Shanjie Su ◽  
Zekai Wang

Abstract Exploring the damage differences between different coal rank coal reservoirs subjected to liquid nitrogen (LN2) cooling is of great significance to the rational development and efficient utilization of coalbed methane. For this purpose, the mechanical properties, acoustic emission (AE) characteristics and energy evolution law of lignite and bituminous coal subjected to LN2 cooling were investigated based on the Brazilian splitting tests. Then, pore structure changes were analyzed to reveal the difference in the microscopic damage between lignite and bituminous coal after LN2 cooling. The results showed that compared with bituminous coal, the pore structure of lignite coal changed more obviously, which was manifested as follows: significant increases in porosity, pore diameters, and pore area; a larger transformation from micropores and transition pores to mesopores and macropores. After LN2 cooling, the thermal damage inside lignite and bituminous coal was 0.412 and 0.069, respectively. The thermal damage reduced the cohesive force between mineral particles, leading to the deterioration of the macroscopic physical and mechanical properties. Simultaneously, denser AE ringing counts and larger accumulated ringing counts were observed after LN2 cooling. Moreover, the random distribution of thermal damage enhanced the randomness of the macrocrack propagation direction, resulting in an increase in the crack path tortuosity. With more initial defects inside coal, a more obvious thermal damage degree and wider damage distribution will be induced by LN2 cooling, leading to more complicated crack formation paths and a higher fragmentation degree, such as that of lignite coal.

2021 ◽  
Vol 29 (1) ◽  
pp. 21-34
Author(s):  
Vera G. Matveeva ◽  
Mariam Yu. Khanova ◽  
Tatyana V. Glushkova ◽  
Larisa V. Antonova

Aim. To evaluate the potential utility of fibrin matrices containing 10, 20, and 25 mg/ml of fibrinogen (fibrin-10, fibrin-20, and fibrin-30, respectively) in vascular tissue engineering (VTE). Materials and Methods. Fibrinogen was isolated using the method of ethanol cryoprecipitation and polymerized using a solution of thrombin and CaCl2. The fibrin structure was studied in a scanning electron microscope, and the physical and mechanical properties of the material were tested on a Zwick/Roell test machine. The metabolic activity of endothelial cells (EC) on the fibrin surface was evaluated by the MTT assay, and the viability of fibroblasts in the thickness of fibrin and possibility for migration by in fluorescent and light microscopy. Percent of fibrin shrinkage was determined from the difference in the sample volumes before and after removal of moisture. Results. The fiber diameter did not differ among all fibrin samples, but the pore diameter in fibrin-30 was smaller than those in fibrin-10 and fibrin-20. A possibility for migration of fibroblasts into the depth of the fibrin matrix and preservation of 97-100% viability of cells at a depth 5 mm was confirmed. The metabolic activity of EC on the surface of fibrin-20 and fibrin-30 exceeded that on collagen, fibronectin, and fibrin-10. All fibrin samples shrank in volume to 95.5-99.5%, and the highest shrinkage was seen in fibrin-10. The physical and mechanical properties of fibrin were inferior to those of human A. mammaria by a factor of 10. Conclusion. Fibrin with fibrinogen concentrations of 20 and 30 mg/ml maintains a high metabolic and proliferative activity of EC on the surface and also a high viability of fibroblasts in the matrix. Its availability, ease of preparation, and a number of other favorable properties make fibrin a promising material for VTE. However, the problem of insufficient strength requires further investigations.


2016 ◽  
Vol 30 (7) ◽  
pp. 6009-6020 ◽  
Author(s):  
Cheng Zhai ◽  
Lei Qin ◽  
Shimin Liu ◽  
Jizhao Xu ◽  
Zongqing Tang ◽  
...  

2019 ◽  
Vol 974 ◽  
pp. 181-186
Author(s):  
V.A. Perfilov ◽  
V.V. Gabova ◽  
Inessa A. Tomareva

The effect of superplasticizing, foam agents, various fiber aggregates on the physical and mechanical properties of cellular concrete has been studied. The article covers the results of experimental studies conducted to determine the effect of foam agents PO-6 and PB-2000, as well as polymeric and basalt fiber on the pore structure of foam concrete. The dependence between the change in density and strength of cellular concrete and the structure of its pore space has been determined.


1986 ◽  
Vol 76 ◽  
Author(s):  
C. W. Wilkins ◽  
H. E. Bair ◽  
M. G. Chan ◽  
R. S. Hutton

ABSTRACTWe have studied some of the physical and mechanical properties of cyclized polybutadiene (CBR) dielectrics by dynamic mechanical analysis, thermal mechanical analysis, thermogravimetry, infrared analysis, and differential scanning calorimetry. Of interest is the difference in properties between thin (<30 μm) films which have been cured under vacuum and those which have been cured in air. Our results indicate that curing under vacuum prevents oxidation and reduces crosslinking. Vacuum cured films have 20% smaller moduli and 200 lower glass transition temperature than do films produced in air.


Vestnik MGSU ◽  
2017 ◽  
pp. 733-740
Author(s):  
Valentina Anatol'yevna Solonina ◽  
Galina Alexandrovna Zimakova ◽  
Dmitriy Sergeevich Baianov ◽  
Pavel Valer'evich Sharko ◽  
Marina Petrovna Zelig

The article reveals the results of one of the stages of the integrated research studying the influence of compounds and disperse characteristics of silica-containing materials on structure formation and qualities of cellular concrete. It has been indicated that the improvement of physical and mechanical properties of cellular concrete can be achieved through creating the best possible pore structure of the concrete and the structure of interporous frame as well as intensification of hydration and crystallization processes under hydrothermal treatment and, as a result, the increase in number and perfecting morphology of hydrated phases. Up-to-date knowledge about the structure and properties of cellular concrete shows potential capacities to enlarge strength characteristics through forming a nanopore structure of a matrix stone, the effective usage of power potential of multicomponent binding including Portland cement, high-calcium lime, activate silica components with grains of submicron and nanometer range.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6921-6932
Author(s):  
Tomislav Sinković ◽  
Branimir Jambreković ◽  
Tomislav Sedlar

The interpretation and presentation of research on the physical and mechanical properties of wood in the radial direction is important for the estimation of technological properties in primary wood processing. It is common practice to define the boundary between the juvenile and mature wood zone of tree growth because of the differences in wood properties in these two zones. The juvenile and mature wood zones can be determined statistically based on the significance of the difference in the properties in a particular zone. This paper presents the insufficiency in the statistical determination of the boundary between juvenile and adult wood. Such limitations detract from the potential value and technological exploitation of wood as raw material. Statistical tests yielded zones that were too wide for the transition of juvenile wood to mature wood. Representations of the distribution of properties in the radial direction also complement the knowledge for assessing the technological properties based on the researched use of the presentation of polynomials of the second degree and the display of the Tukey HSD test in the form of comparison tables. The graphical representations by groups of the tested annual rings of fir wood also help to assess the technological properties.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 519
Author(s):  
Hewan Li ◽  
Jianping Zuo ◽  
Laigui Wang ◽  
Pengfei Li ◽  
Xiaowei Xu

The pore and fracture structure of coal is the main factor that affects the storage and seepage capacity of coalbed methane. The damage of coal structure can improve the gas permeability of coalbed methane. A coal sample with a drilled hole was kept inside of a custom-designed device to supply confining pressure to the coal sample. Liquid nitrogen was injected into the drilled hole of the coal sample to apply cyclic cold loading. Confining pressures varying from 0~7 MPa to the coal sample were applied to explore the relationship between the structural damage and confining pressure. The structural damage rules of coal samples under different confining pressure were revealed. The results showed that: (1) The structural damage degree of the coal sample increases with the increase of confining pressure; (2) The coal sample was broken after three cycles of cold loading under 7 MPa confining pressure; (3) Without confining pressure, the coal sample is more likely to be damaged or even destroyed by cold liquid nitrogen. (4) The fracture extends along the stratification direction of coal samples, which is significant for coal samples with original fractures, but not obvious for the coal sample without fracture. The research results provide a new method and theoretical basis for permeability improvement of the coal seam.


Author(s):  
Raffaella Aversa ◽  
Relly Victoria Petrescu ◽  
Florian Ion T. Petrescu ◽  
Davide Apicella ◽  
and Antonio Apicella

Innovative tissue engineering biomimetic hydrogels based on hydrophilic polymers have been investigated for their physical and mechanical properties. 5% to 25% by volume loading PHEMA-nanosilica glassy hybrid samples were equilibrated at 37°C in aqueous physiological isotonic and hypotonic saline solutions (0.15 and 0.05 M NaCl) simulating two limiting possible compositions of physiological extracellular fluids. The glassy and hydrated hybrid materials were characterized both for dynamo-mechanical properties and equilibrium absorptions in the two physiological-like aqueous solutions. Mechanical and the morphological modifications occurring in the samples have been described. The 5% volume nanosilica loading hybrid nanocomposite composition showed mechanical characteristics in the dry and hydrated states that were comparable to those of cortical bone and articular cartilage, respectively, and then chosen for further sorption kinetics characterization. Sorption and swelling kinetics were monitored up to equilibrium. Changes in water activities and osmotic pressures in the water-hybrid systems equilibrated at the two limiting solute molarities of the physiological solutions have been related to the observed anomalous sorption modes using the Flory-Huggins interaction parameter approach. The bulk modulus of the dry and glassy PHEMA-5% nanosilica hybrid at 37°C has been observed to be comparable with the values of the osmotic pressures generated from the sorption of isotonic and hypotonic solutions. The anomalous sorption modes and swelling rates are coherent with the difference between osmotic swelling pressures and hybrid glassy nano-composite bulk modulus: the lower the differences the higher the swelling rate and equilibrium solution uptakes. Bone tissue engineering benefits of use of tuneable biomimetic scaffold biomaterials that can be “designed” to act as biocompatible and biomechanically active hybrid interfaces are discussed.


Sign in / Sign up

Export Citation Format

Share Document