Effects of Intrinsic Flame Instabilities On Thermoacoustic Oscillations in Lean Premixed Gas Turbines

Author(s):  
Fangyan Li ◽  
Xiaotao Tian ◽  
Ming-long Du ◽  
Lei Shi ◽  
Jiashan Cui

Abstract Thermoacoustic instabilities are commonly encountered in the development of aeroengines and rocket motors. Research on the fundamental mechanism of thermoacoustic instabilities is beneficial for the optimal design of these engine systems. In the present study, a thermoacoustic instability model based on the lean premixed gas turbines (LPGT) combustion system was established. The longitudinal distribution of heat release caused by the intrinsic instability of flame front is considered in this model. Effects of different heat release distributions and characteristics parameters of the premixed gas (Lewis number Le, Zeldovich Number and Prandtl number Pr) on thermoacoustic instability behaviors of the LPGT system are investigated based on this model. Results show that the LPGT system features with two kinds of unstable thermoacoustic modes. The first one corresponds to the natural acoustic mode of the plenum and the second one corresponds to that of the combustion chamber. The characteristic parameters of premixed gases have a large impact on the stability of the system and even can change the system from stable to unstable state.

1999 ◽  
Vol 121 (3) ◽  
pp. 415-421 ◽  
Author(s):  
A. A. Peracchio ◽  
W. M. Proscia

Lean premixed combustors, such as those used in industrial gas turbines to achieve low emissions, are often susceptible to the thermoacoustic combustion instabilities, which manifest themselves as pressure and heat release oscillations in the combustor. These oscillations can result in increased noise and decreased durability due to vibration and flame motion. A physically based nonlinear parametric model has been developed that captures this instability. It describes the coupling of combustor acoustics with the rate of heat release. The model represents this coupling by accounting for the effect of acoustic pressure fluctuations on the varying fuel/air ratio being delivered to the flame, causing a fluctuating heat release due to both fuel air ratio variations and flame front oscillations. If the phasing of the fluctuating heat release and pressure are proper, an instability results that grows into a limit cycle. The nonlinear nature of the model predicts the onset of the instability and additionally captures the resulting limit cycle. Tests of a lean premixed nozzle run at engine scale and engine operating conditions in the UTRC single nozzle rig, conducted under DARPA contract, exhibited instabilities. Parameters from the model were adjusted so that analytical results were consistent with relevant experimental data from this test. The parametric model captures the limit cycle behavior over a range of mean fuel air ratios, showing the instability amplitude (pressure and heat release) to increase and limit cycle frequency to decrease as mean fuel air ratio is reduced.


Author(s):  
Owen S. Graham ◽  
Ann P. Dowling

The adoption of lean premixed prevaporised combustion systems can reduce NOx emissions from gas turbines, but unfortunately also increases their susceptibility to thermoacoustic instabilities. Initially, acoustic waves can produce heat release fluctuations by a variety of mechanisms, often by perturbing the equivalence ratio. If correctly phased, heat release fluctuations can subsequently generate more acoustic waves, which at high amplitude can result in significant structural damage to the combustor. The prediction of this phenomenon is of great industrial interest. In previous work, we have coupled a physics based, kinematic model of the flame with a network model to provide the planar acoustic response necessary to close the feedback loop and predict the onset and amplitude of thermoacoustic instabilities in a lab-scale, axisymmetric single burner combustor. The advantage of a time domain approach is that the modal interaction, the influence of harmonics, and flame saturation can be investigated. This paper extends this approach to more realistic, annular geometries, where both planar and circumferential modes must be considered. In lean premixed prevaporised combustors, fluctuations in equivalence ratio have been shown to be a dominant cause of unsteady combustion. These can occur, for example, due to velocity perturbations in the premix ducts, which can lead to equivalence ratio fluctuations at the fuel injectors, which are subsequently convected downstream to the flame surfaces. Here, they can perturb the heat release by locally altering the flame speed, enthalpy of combustion, and, indirectly, the flame surface area. In many gas turbine designs, particularly aeroengines, the geometries are composed of a ring of premix ducts linking a plenum and an annular combustor. The most unstable modes are often circumferential modes. The network model is used to characterise the flow response of the geometry to heat fluctuations at an appropriate location, such as the fuel injectors. The heat release at each flame holder is determined in the time domain using the kinematic flame model derived, as a function of the flow perturbations in the premix duct. This approach is demonstrated for an annular ring of burners on a in a simple geometry. The approach is then extended to an industrial type gas turbine combustor, and used to predict the limit cycle amplitudes.


Author(s):  
A. A. Peracchio ◽  
W. M. Proscia

Lean premixed combustors, such as those used in industrial gas turbines to achieve low emissions, are often susceptible to thermoacoustic combustion instabilities, which manifest themselves as pressure and heat release oscillations in the combustor. These oscillations can result in increased noise and decreased durability due to vibration and flame motion. A physically based nonlinear parametric model has been developed that captures this instability. It describes the coupling of combustor acoustics with the rate of heat release. The model represents this coupling by accounting for the effect of acoustic pressure fluctuations on the varying fuel/air ratio being delivered to the flame, causing a fluctuating heat release due to both fuel air ratio variations and flame front oscillations. If the phasing of the fluctuating heat release and pressure are proper, an instability results that grows into a limit cycle. The nonlinear nature of the model predicts the onset of the instability and additionally captures the resulting limit cycle. Tests of a lean premixed nozzle run at engine scale and engine operating conditions in the UTRC Single Nozzle Rig, conducted under DARPA contract, exhibited instabilities. Parameters from the model were adjusted so that analytical results were consistent with relevant experimental data from this test. The parametric model captures the limit cycle behavior over a range of mean fuel air ratios, showing the instability amplitude (pressure and heat release) to increase and limit cycle frequency to decrease as mean fuel air ratio is reduced.


Author(s):  
S. Galvin ◽  
J. A. Fitzpatrick

There is significant interest in the interaction of parameters associated with lean premixed combustion because the demand for reduced emissions has led to an increased usage of this type of system. Thermoacoustic instabilities, which arise as a consequence of unsteady pressure and heat release interactions, are known to occur frequently for these lean premixed configurations. There has been a substantial research effort in the past decade directed at the development of modelling techniques for the prediction and control of these instabilities. Tests have been performed in an optically accessible dump combustor for a range of equivalence ratio with two different dump or expansion ratios and a number of flow rates. Both thermoacoustic and flow/acoustic interactions are observed over a large operating range. The pressure and heat release autospectra and cross-spectra were calculated and their coherence and phase relationships are examined to determine their interaction including the applicability of the Rayleigh criterion.


Author(s):  
Davide Laera ◽  
Sergio M. Camporeale

Modern combustion chambers of gas turbines for power generation and aero-engines suffer of thermo-acoustic combustion instabilities generated by the coupling of heat release rate fluctuations with pressure oscillations. The present article reports a numerical analysis of limit cycles arising in a longitudinal combustor. This corresponds to experiments carried out on the longitudinal rig for instability analysis (LRIA) test facility equipped with a full-scale lean-premixed burner. Heat release rate fluctuations are modeled considering a distributed flame describing function (DFDF), since the flame under analysis is not compact with respect to the wavelengths of the unstable modes recorded experimentally. For each point of the flame, a saturation model is assumed for the gain and the phase of the DFDF with increasing amplitude of velocity fluctuations. A weakly nonlinear stability analysis is performed by combining the DFDF with a Helmholtz solver to determine the limit cycle condition. The numerical approach is used to study two configurations of the rig characterized by different lengths of the combustion chamber. In each configuration, a good match has been found between numerical predictions and experiments in terms of frequency and wave shape of the unstable mode. Time-resolved pressure fluctuations in the system plenum and chamber are reconstructed and compared with measurements. A suitable estimate of the limit cycle oscillation is found.


Author(s):  
Ramachandran Gopakumar ◽  
Rahul Belur Vishwanath ◽  
Jasmeet Singh ◽  
Ankit Dutta ◽  
Swetaprovo Chaudhuri

In this paper, we present a novel initial attempt on analysis of the mitigation mechanism of instability by rotating the otherwise static swirler in a lean premixed, swirl stabilized, labscale combustor. It has been reported in our previous work that increasing the swirler rotation rate mitigates the self-excited thermoacoustic instability in a model lab-scale combustor, over a range of conditions. Here, it is found that for a given period of observation, instead of a continuous and gradual decrease in the time localized pressure amplitude from the fully unstable state towards the fully mitigated state, the fraction of the time during which instability is present is reduced. With increasing swirler rotation rates, the instability becomes more intermittent with progressive reduction in frequency of their occurrence. High speed PIV results are also presented along with simultaneous pressure signals which support this claim. Such an intermittent route to instability mitigation could be attributed to the background turbulent flow field and is reminiscent of the intermittent opposite transition (implemented by changing the Reynolds number) from a fully chaotic state to a fully unstable state as recently discovered in Nair, Thampi and Sujith [1]. An attempt is made to model the behavior of pressure oscillations using the well established mean-field Kuramoto model. The variation of the order parameter r, which is the parameter for the measurement of synchronization between the oscillators provides critical insights on the transition from the unstable, intermittent to stable states.


Hydrogen ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 33-57
Author(s):  
Jadeed Beita ◽  
Midhat Talibi ◽  
Suresh Sadasivuni ◽  
Ramanarayanan Balachandran

Hydrogen is receiving increasing attention as a versatile energy vector to help accelerate the transition to a decarbonised energy future. Gas turbines will continue to play a critical role in providing grid stability and resilience in future low-carbon power systems; however, it is recognised that this role is contingent upon achieving increased thermal efficiencies and the ability to operate on carbon-neutral fuels such as hydrogen. An important consideration in the development of gas turbine combustors capable of operating with pure hydrogen or hydrogen-enriched natural gas are the significant changes in thermoacoustic instability characteristics associated with burning these fuels. This article provides a review of the effects of burning hydrogen on combustion dynamics with focus on swirl-stabilised lean-premixed combustors. Experimental and numerical evidence suggests hydrogen can have either a stabilising or destabilising impact on the dynamic state of a combustor through its influence particularly on flame structure and flame position. Other operational considerations such as the effect of elevated pressure and piloting on combustion dynamics as well as recent developments in micromix burner technology for 100% hydrogen combustion have also been discussed. The insights provided in this review will aid the development of instability mitigation strategies for high hydrogen combustion.


Author(s):  
A. Andreini ◽  
B. Facchini ◽  
L. Mangani ◽  
F. Simonetti

In the last years, the more restrictive environmental legislations have constrained gas turbine manufacturers to the development of new low-emission combustors. Lean Premixed technology has become a necessary standard to meet emissions requirements and allowing an heavy reduction of nitrogen oxides emission. This kind of technology, due to the use of lean premixed mixtures, is severely affected by thermoacoustic phenomena which cause damages to combustor components and consequently reduce the overall gas turbine life of a factor of two or more. Specifically, premixed flames pose the threat of pressure oscillations. This phenomenon is the effect of the strong interaction between combustion heat-release and fluid dynamics aspects. In order to investigate thermoacoustic instabilities, a mono-dimensional code was developed and validated. It takes into account only longitudinal frequencies and it is thought to be highly modular to modify or add blocks, corresponding to different thermoacoustic models. The tool is based on a lumped-parameter approach, which consists in considering constant mean flow quantities over each fundamental straight duct element and a nodal point at each duct interface. For each interface, where an acoustic impedance could be present, the linearized fluctuating mass, momentum and energy equations are solved including entropic waves. To validate such tool, several tests, referring to actual test rigs and experimental gas turbine combustor geometries, were performed. The results show a general agreement with empirical data and other numerical results reported in literature in terms of resonance frequencies, stability and modal shapes, both for no flame and fluctuating heat release cases.


Author(s):  
Rajiv Mongia ◽  
Robert Dibble ◽  
Jeff Lovett

Lean premixed combustion has emerged as a method of achieving low pollutant emissions from gas turbines. A common problem of lean premixed combustion is combustion instability. As conditions inside lean premixed combustors approach the lean flammability limit, large pressure variations are encountered. As a consequence, certain desirable gas turbine operating regimes are not approachable. In minimizing these regimes, combustor designers must rely upon trial and error because combustion instabilities are not well understood (and thus difficult to model). When they occur, pressure oscillations in the combustor can induce fluctuations in fuel mole fraction that can augment the pressure oscillations (undesirable) or dampen the pressure oscillations (desirable). In this paper, we demonstrate a method for measuring the fuel mole fraction oscillations which occur in the premixing section during combustion instabilities produced in the combustor that is downstream of the premixer. The fuel mole fraction in the premixer is measured with kHz resolution by the absorption of light from a 3.39 μm He-Ne laser. A sudden expansion combustor is constructed to demonstrate this fuel mole fraction measurement technique. Under several operating conditions, we measure significant fuel mole fraction fluctuations that are caused by pressure oscillations in the combustion chamber. Since the fuel mole fraction is sampled continuously, a power spectrum is easily generated. The fuel mole fraction power spectrum clearly indicates fuel mole fraction fluctuation frequencies are the same as the pressure fluctuation frequencies under some operating conditions.


Author(s):  
Felix Grimm ◽  
Jean-Michel Lourier ◽  
Oliver Lammel ◽  
Berthold Noll ◽  
Manfred Aigner

A method for selective, frequency-resolved analysis of spatially distributed, time-coherent data is introduced. It relies on filtering of Fourier-processed signals with periodic structures in frequency-domain. Therefrom extracted information can be analyzed in both, frequency- and time-domain using an inverse transformation ansatz. In the presented paper, the approach is applied to a laboratory scale, twelve nozzle FLOX®-GT-burner for the investigation of high-frequency thermoacoustic pressure oscillations and limit-cycle mechanisms. The burner is operated at elevated pressure for partially premixed combustion of a hydrogen and natural gas mixture with air. At a certain amount of hydrogen addition to fuel injection, the burner exhibits self-sustained high-frequency thermoacoustic oscillation. This unstable operation is simulated with the fractional step approach SICS (Semi Implicit Characteristic Splitting), a pressure based solver extension of the Finite Volume based research code THETA (Turbulent Heat Release Extension for the TAU Code) for the treatment of weakly compressible flows with combustion. A hybrid LES/URANS simulation delivers time-resolved simulation data of the thermoacoustically unstable operation condition, which is analyzed with the presented SFFFA (Selective Fast Fourier Filtering Approach). Acoustic pressure distribution in the combustion chamber is explicitly resolved and assigned to different characteristic modes by signal decomposition. Furthermore, the SFFFA is used for the analysis of acoustic feedback mechanism by investigating filtered transient heat release, acoustic pressure, velocity and mixture fraction. Coherent structures in flow field and combustion as well as periodic convective processes are resolved and linked to transient acoustic pressure, extensively describing the acoustic feedback of the examined burner configuration.


Sign in / Sign up

Export Citation Format

Share Document