scholarly journals Second Law Approach to the Analysis of Blade Cooling Effects on Gas Turbine Performance

Author(s):  
Francesco Farina ◽  
Franco Donatini

A preliminary procedure has been developed to analyse the cooling of both nozzle and rotor blades in a gas turbine, evaluating the influence of the system on the performance of the machine. The developed method, which is based on a second law approach, defines the effects of the thermodynamic losses due to the forced convection air blade cooling on the performance of a typical heavy duty gas turbine in terms of lost exergy as function of the turbine inlet temperature.

Author(s):  
Mirko Baratta ◽  
Francesco Cardile ◽  
Daniela Anna Misul ◽  
Nicola Rosafio ◽  
Simone Salvadori ◽  
...  

Abstract The even more stringent limitations set by the European Commission on pollutant emissions are forcing gas turbine manufacturers towards the redesign of the most important components to increase efficiency and specific power. Current trends in gas turbine design include an increased attention to the design of cooling systems and enhanced best practices for the study of components interaction. At the same time, the recent crisis suffered by the oil and gas industry reduced the interest in brand new gas turbines, thus increasing the service market. Therefore, original equipment manufacturers would rather propose the replacement of specific components within the gas turbine plant during its maintenance with compatible elements that are likely to guarantee increased performance and longer residual lifetime at a more desirable nominal working point. In the present activity the cooling system of the TG20 heavy-duty gas turbine has been redesigned to increase the turbine inlet temperature while contemporaneously reducing the total amount of coolant mass-flow. Specifically, the cooling scheme of the rotating blade of the first turbine row has been reviewed at the Department of Energy (DENERG) of Politecnico di Torino in cooperation with EthosEnergy Italia S.p.a.. The paper presents a new design, which, starting from the original solution featuring fifteen smooth pipes, adopts an improved geometry characterized by the presence of turbulators. The activity has been carried out using Computational Fluid Dynamics (CFD) for the coolant/blade interaction and one-dimensional models developed at EthosEnergy for the redistribution of the cooling flows in the cavities. The mutual effects between the coolant fluid and the blade are analyzed using a Conjugate Heat Transfer (CHT) approach with Star-CCM+. The validation of the computational approach has been performed exploiting the experimental data available for the NASA C3X test case. The TG20 rotating blade of the first turbine row has been analyzed considering the two different coolant configurations. The impact of the main flow on the thermal field has initially been included by imposing a temperature field on the blade surface. The latter field has in turn been obtained by means of a separate computation for the solid only. Full CHT simulations has hence been performed, thus quantifying the accuracy of the proposed approach. The obtained results are discussed in terms of thermo-fluid-dynamic effects.


Author(s):  
Ashley P. Wiese ◽  
Matthew J. Blom ◽  
Michael J. Brear ◽  
Chris Manzie ◽  
Anthony Kitchener

This paper presents a model-based, off-line method for analyzing the performance of individual components in an operating gas turbine. This integrated model combines submodels of the combustor efficiency, the combustor pressure loss, the hot-end heat transfer, the turbine inlet temperature, and the turbine performance. As part of this, new physics-based models are proposed for both the combustor efficiency and the turbine. These new models accommodate operating points that feature the flame extending beyond the combustor and combustion occurring in the turbine. Systematic model reduction is undertaken using experimental data from a prototype, microgas turbine rig built by the group. This so called gas turbine air compressor (GTAC) prototype utilizes a single compressor to provide cycle air and a supply of compressed air as its sole output. The most general model results in sensible estimates of all system parameters, including those obtained from the new models that describe variations in both the combustor and turbine performance. As with other microgas turbines, heat losses are also found to be significant.


Author(s):  
Maryam Besharati-Givi ◽  
Xianchang Li

The increase of power need raises the awareness of producing energy more efficiently. Gas turbine has been one of the important workhorses for power generation. The effects of parameters in design and operation on the power output and efficiency have been extensively studied. It is well-known that the gas turbine inlet temperature (TIT) needs to be high for high efficiency as well as power production. However, there are some material restrictions with high-temperature gas especially for the first row of blades. As a result blade cooling is needed to help balance between the high TIT and the material limitations. The increase of TIT is also limited by restriction of emissions. While the blade cooling can allow a higher TIT and better turbine performance, there is also a penalty since the compressed air used for cooling is removed from the combustion process. Therefore, an optimal cooling flow may exist for the overall efficiency and net power output. In this paper the relationship between the TIT and amount of cooling air is studied. The TIT increase due to blade cooling is considered as a function of cooling air flow as well as cooling effectiveness. In another word, the increase of the TIT is limited while the cooling air can be increased continuously. Based on the relationship proposed the impact of blade cooling on the gas turbine performance is investigated. Compared to the simple cycle case without cooling, the blade cooling can increase the efficiency from 28.8 to 34.0% and the net power from 105 to 208 MW. Cases with different operation conditions such as pressure ratios as well as design aspects with regeneration are considered. Aspen plus software is used to simulate the cycles.


Author(s):  
A. F. Carter

During a study of possible gas turbine cycles for a 2000-hp unit for tank propulsion, it has been established that the level of achievable specific fuel consumption (sfc) is principally determined by the combustor inlet temperature. If a regenerative cycle is selected, a particular value of combustor inlet temperature (and hence sfc) can be produced by an extremely large number of combinations of compressor pressure ratio, turbine inlet temperature, and heat exchanger effectiveness. This paper outlines the overall design considerations which led to the selection of a relatively low pressure ratio engine in which the turbine inlet temperature was sufficiently low that blade cooling was not necessary.


2012 ◽  
Vol 505 ◽  
pp. 539-543
Author(s):  
Kyoung Hoon Kim ◽  
Kyoung Jin Kim ◽  
Chul Ho Han

Since the gas turbine systems require active cooling to maintain high operating temperature while avoiding a reduction in the system operating life, turbine blade cooling is very important and essential but it may cause the performance losses in gas turbine. This paper deals with the comparative thermodynamic analysis of gas turbine system with and without regeneration by using the recently developed blade-cooling model when the turbine blades are cooled by the method of film cooling. Special attention is paid to investigating the effects of system parameters such as pressure ratio and turbine inlet temperature on the thermodynamic performance of the systems. In both systems the thermal efficiency increases with turbine inlet temperature, but its effect is less sensitive in simpler system


Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
...  

Over recent decades, the variability and high costs of the traditional gas turbine fuels (e.g. natural gas), have pushed operators to consider low-grade fuels for running heavy-duty frames. Synfuels, obtained from coal, petroleum or biomass gasification, could represent valid alternatives in this sense. Although these alternatives match the reduction of costs and, in the case of biomass sources, would potentially provide a CO2 emission benefit (reduction of the CO2 capture and sequestration costs), these low-grade fuels have a higher content of contaminants. Synfuels are filtered before the combustor stage, but the contaminants are not removed completely. This fact leads to a considerable amount of deposition on the nozzle vanes due to the high temperature value. In addition to this, the continuous demand for increasing gas turbine efficiency, determines a higher combustor outlet temperature. Current advanced gas turbine engines operate at a turbine inlet temperature of (1400–1500) °C which is high enough to melt a high proportion of the contaminants introduced by low-grade fuels. Particle deposition can increase surface roughness, modify the airfoil shape and clog the coolant passages. At the same time, land based power units experience compressor fouling, due to the air contaminants able to pass through the filtration barriers. Hot sections and compressor fouling work together to determine performance degradation. This paper proposes an analysis of the contaminant deposition on hot gas turbine sections based on machine nameplate data. Hot section and compressor fouling are estimated using a fouling susceptibility criterion. The combination of gas turbine net power, efficiency and turbine inlet temperature (TIT) with different types of synfuel contaminants highlights how each gas turbine is subjected to particle deposition. The simulation of particle deposition on one hundred (100) gas turbines ranging from 1.2 MW to 420 MW was conducted following the fouling susceptibility criterion. Using a simplified particle deposition calculation based on TIT and contaminant viscosity estimation, the analysis shows how the correlation between type of contaminant and gas turbine performance plays a key role. The results allow the choice of the best heavy-duty frame as a function of the fuel. Low-efficiency frames (characterized by lower values of TIT) show the best compromise in order to reduce the effects of particle deposition in the presence of high-temperature melting contaminants. A high-efficiency frame is suitable when the contaminants are characterized by a low-melting point thanks to their lower fuel consumption.


Author(s):  
Ennio Carnevale ◽  
Bruno Facchini ◽  
Giovanni Ferrara ◽  
Luca Innocenti

This paper proposes a theoretical study of steam cooling application for a typical rotor blade cooling system of heavy duty gas turbine. The steam cooling introduction is evaluated using open and closed loop configurations; the possible interaction of steam and air cooling is also studied; the simulation is realized with a family of modular codes developed by authors. The study is conducted with the characteristic cooling parameters (efficiency, effectiveness) analysis and by the evaluation of blade temperature distribution. The results show the possibility of a mass coolant reduction and/or, a maximum cycle temperature increase with the same cooling system used for standard air cooling. The best results are obtained with an innovative closed-open/steam-air cooling system.


Author(s):  
Aaron R. Byerley ◽  
August J. Rolling

Since the 1950’s, the turbine inlet temperatures of gas turbine engines have been steadily increasing as engine designers have sought to increase engine thrust-to-weight and reduce fuel consumption. In turbojets and low-bypass turbofan engines, increasing the turbine inlet temperature boosts specific thrust, which in some cases can support supersonic flight without the use of an afterburner. In high-bypass gas turbine engines, increasing the turbine inlet temperature makes possible higher bypass ratios and overall pressure ratios, both of which reduce specific fuel consumption. Increased turbine inlet temperatures, without sacrificing blade life, have been made possible through advances in blade cooling effectiveness and high-temperature turbine blade materials. Investigating the impact of higher turbine inlet temperatures and the corresponding cooling air flow rates on specific thrust, specific fuel consumption, and engine development cost is the subject of this paper. A physics-based cooling effectiveness correlation is presented for linking turbine inlet temperature to cooling flow fraction. Two cases are considered: 1) a low-bypass, mixed-exhaust, non-afterburning turbofan engine intended to support supercruising at Mach 1.5 and 2) a high-bypass, unmixed-exhaust turbofan engine intended to support highly efficient, long range flight at Mach 0.8. For each of these two cases, both baseline and enhanced cooling effectiveness values as well as both baseline and elevated turbine blade material temperatures are considered. Comparing these cases will ensure that students taking courses in preliminary engine design understand why huge research investments continue to be made in turbine blade cooling and advanced, high-temperature turbine blade material development.


Author(s):  
Carlo Carcasci ◽  
Ennio Carnevale ◽  
Bruno Facchini ◽  
Giovanni Ferrara

The increase in gas turbine performance requires very high total inlet temperatures even in heavy-duty applications. Therefore, an accurate design of both the blade cooling and the cooling network from the compressor to the blade is very important. In previous works, the authors have studied the cooling blade problems for both the stator and the rotor case. The present paper presents a simple and fast procedure to study the cooling network: a modular code has been developed for this purpose and particular attention has been focused on the study o the rotating cavities between the stator and the rotating disks. The results we have obtained are good and the code developed is at present used in industry.


Sign in / Sign up

Export Citation Format

Share Document