Effect of Circumferential Inlet Flow Distortion and Swirl on the Flow Field of an Axial Flow Fan Stage

Author(s):  
K. Viswanath ◽  
M. Govardhan

This paper reports a study of the combined effects of swirl and circumferential inlet flow distortion on the flow field of an axial flow fan stage. The study involves steady state measurements of the flow field at the rotor inlet, exit and the stator exit of the single stage axial flow fan subjected to circumferential inlet flow distortion and swirl. Flow field survey was done at two flow coefficients, namely, ϕ = 0.45 and ϕ = 0.285. The flow at the inlet to the rotor was measured using a three hole pressure probe and five hole pressure probes were used at the rotor and stator exits. The study indicated that at the design flow coefficient swirl had caused deterioration of the performance in addition to that caused by distortion. In addition, the attenuation of distortion was high in the presence of swirl.

Author(s):  
S. J. van der Spuy ◽  
T. W. von Backstro¨m ◽  
D. G. Kro¨ger

The large number of axial flow fans used in modern dry-cooled power plant air-cooled steam condensers necessitates the use of simplified numerical models when simulating the perfromance of such a condenser. Three simplified fan models are presented and implemented using computational fluid dynamics (CFD). These are referred to as the pressure jump, actuator disc and extended actuator disc models. The paper compares the CFD results obtained using these three models to experimental results obtained on a multiple axial flow fan test facility. The test facility was configured in such a way that it could accommodate different fan platform heights to vary the level of inlet flow distortion for the facility. The simulations show that the general flow field adjacent to the facility is independent of the simplified fan model that is used in the CFD analysis. However, the predicted flow field directly upstream of the edge fan varies according to the method used to represent the fan. It is also found that the more sophisticated fan models give a more accurate estimate of fan operation at higher levels of inlet flow distortion than the less sophisticated fan models.


Author(s):  
Ali Akturk ◽  
Cengiz Camcı

This paper describes a novel ducted fan inlet flow conditioning concept that will significantly improve the performance and controllability of ducted fan systems operating at high angle of attack. High angle of attack operation of ducted fans is very common in VTOL (vertical take off and landing) UAV systems. The new concept that will significantly reduce the inlet lip separation related performance penalties in the edgewise/forward flight zone is named DOUBLE DUCTED FAN (DDF). The current concept uses a secondary stationary duct system to control inlet lip separation related momentum deficit at the inlet of the fan rotor occurring at elevated edgewise flight velocities. The DDF is self-adjusting in a wide edgewise flight velocity range and its corrective aerodynamic effect becomes more pronounced with increasing flight velocity due to its inherent design properties. Most axial flow fans are designed for an axial inlet flow with zero or minimal inlet flow distortion. The DDF concept is proven to be an effective way of dealing with inlet flow distortions occurring near the lip section of any axial flow fan system, especially at high angle of attack. In this present paper, a conventional baseline duct without any lip separation control feature is compared to two different double ducted fans named DDF CASE-A and DDF CASE-B via 3D, viscous and turbulent flow computational analysis. Both hover and edgewise flight conditions are considered. Significant relative improvements from DDF CASE-A and DDF CASE-B are in the areas of vertical force (thrust) enhancement, nose-up pitching moment control and recovery of fan through-flow mass flow rate in a wide horizontal flight range.


Author(s):  
Neil Fourie ◽  
S. J. van der Spuy ◽  
T. W. von Backström

The use of air-cooled steam condensers (ACSCs) is preferred in the chemical and power industry due to their ability to adhere to stringent environmental and water use regulations. ACSC performance is, however, highly dependent on the prevailing wind conditions. Research has shown that the presence of wind reduces the performance of ACSCs. It has been found that cross-winds (wind perpendicular to the longest side of the ACSC) cause distorted inlet flow conditions, particularly at the upstream peripheral fans near the symmetry plane of the ACSC. These fans are subjected to what is referred to as “two-dimensional” wind conditions, which are characterized by flow separation on the upstream edge of the fan inlets. Experimental investigations into inlet flow distortion have simulated these conditions by varying the fan platform height. Low platform heights resulted in higher levels of inlet flow distortion, as also found to exist with high cross-wind velocities. The similarity between platform height and cross-wind velocity is investigated in this study by conducting experimental and numerical investigations into the effect of distorted inlet flow conditions on the performance of various fan configurations (representative of configurations used in the South-African power industry). A correlation between system volumetric effectiveness, platform height, and cross-wind velocity is derived which provides a means to compare platform height and cross-wind velocity effects.


Author(s):  
Francois G. Louw ◽  
Theodor W. von Backström ◽  
Sybrand J. van der Spuy

Large axial flow fans are used in forced draft air cooled heat exchangers (ACHEs). Previous studies have shown that adverse operating conditions cause certain sectors of the fan, or the fan as a whole to operate at very low flow rates, thereby reducing the cooling effectiveness of the ACHE. The present study is directed towards the experimental and numerical analyses of the flow in the vicinity of an axial flow fan during low flow rates. This is done to obtain the global flow structure up and downstream of the fan. A near-free-vortex fan, designed for specific application in ACHEs, is used for the investigation. Experimental fan testing was conducted in a British Standard 848, type A fan test facility, to obtain the fan characteristic. Both steady-state and time-dependent numerical simulations were performed, depending on the operating condition of the fan, using the Realizable k-ε turbulence model. Good agreement is found between the numerically and experimentally obtained fan characteristic data. Using data from the numerical simulations, the time and circumferentially averaged flow field is presented. At the design flow rate the downstream fan jet mainly moves in the axial and tangential direction, as expected for a free-vortex design criteria, with a small amount of radial flow that can be observed. As the flow rate through the fan is decreased, it is evident that the down-stream fan jet gradually shifts more diagonally outwards, and the region where reverse flow occur between the fan jet and the fan rotational axis increases. At very low flow rates the flow close to the tip reverses through the fan, producing a small recirculation zone as well as swirl at certain locations upstream of the fan.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
N. Sitaram ◽  
G. Ch. V. Sivakumar

The flow field at the rotor exit of a low aspect ratio axial flow fan for different tip geometries and for different flow coefficients is measured in the present study. The following configurations are tested: (1) rotor without partial shroud, designated as rotor (wos), (2) rotor with partial shroud, designated as rotor (ws), and (3) rotor with perforated (perforations in the shape of discrete circular holes) partial shroud, designated as rotor (wps). From steady state measurements, the performance of rotor (wps) is found to be the best. Both the rotors with partial shrouds have stalled at a higher flow coefficient compared to that of rotor (wos). From periodic flow measurements, it is concluded that the low velocity region near the tip section is considerably reduced with the use of partial shrouds with perforations. The extent of this low velocity region for both rotor (wos) and rotor (wps) increases with decreasing flow coefficient due to increased stage loading. This core of low momentum fluid has moved inwards of the annulus and towards the pressure side as the flow coefficient decreases. The extent of the low momentum fluid is smaller for rotor (wps) than that of rotor (wos) at all flow coefficients.


Sign in / Sign up

Export Citation Format

Share Document