Structure and Propagation of Rotating Stall in a Single- and a Multi-Stage Axial Compressor
The structure and propagation of rotating stall cells in a single- and a two-stage subsonic axial compressor is addressed in this paper using computational and experimental analysis. Unsteady solutions of the 2-D inviscid compressible (Euler) equations of motion are presented for one operating point in the fully-developed rotating stall regime for both a single- and a two-stage compressor. The inviscid assumption is verified by comparing the single-stage 2-D in viscid/compressible solution with an equivalent 2-D viscous (Navier-Stokes) result for incompressible flow. The structure of the rotating stall cell is analyzed and compared for the single- and two-stage cases. The numerical solutions are validated against experimental data consisting of flow visualization and unsteady row-by-row static pressure measurements obtained in a four-stage water model of a subsonic compressor. The CFD solutions supply a link between the observed experimental features and provide additional information on the structure of the stall flow. Based on this study. supporting assumptions regarding the driving mechanisms for the propagation of fully-developed rotating stall cells and their structure are postulated. In methodical respect the results suggest that the inviscid model is able to reproduce the essentials of the flow physics associated with the propagation of fully-developed, full-span rotating stall in a subsonic axial compressor.