Test Response of a Turbocharger Supported on Floating Ring Bearings: Part I — Assessment of Subsynchronous Motions

Author(s):  
Chris Holt ◽  
Luis San Andre´s ◽  
Sunil Sahay ◽  
Peter Tang ◽  
Gerry La Rue ◽  
...  

Measurements of casing acceleration on an automotive turbocharger running to a top speed of 115 krpm and driven by ambient temperature pressurized air are reported. Waterfall acceleration spectra versus rotor speed show the effects of increasing lubricant inlet pressure and temperature on the turbocharger rotordynamic response. A comprehensive analysis of the test data forwards regimes of speed operation with two subsynchronous whirl motions (rotordynamic instabilities). Increasing the lubricant feed pressure delays the onset speed of instability for the most severe subsynchronous motion. However, increasing the lubricant feed pressure also produces larger synchronous displacements. The effect of lubricant feed temperature is minimal on the onset and end speeds of rotordynamic instability. Nevertheless, operation with a cold lubricant exhibits lower amplitudes of motion, synchronous and subsynchronous. The experimental results show the subsynchronous frequencies of motion do not lock (whip) at system natural frequencies but continuously track the rotor speed. No instabilities (subsynchronous whirl) remain for operating speeds above 90 krpm. Bearings greatly influence turbocharger (TC) rotordynamic performance.

Author(s):  
Tae Ho Kim ◽  
Luis San Andre´s

Comprehensive modeling of gas foil bearings (GFBs) anchored to reliable test data will enable the widespread usage of these bearings into novel high speed turbomachinery applications. GFBs often need a forced cooling gas flow, axially fed through one end of the bearing, for adequate thermal management. The paper presents rotordynamic response measurements on a rigid rotor supported on GFBs during rotor speed run-up and coastdown tests with the GFBs supplied with increasing feed gas pressures to 2.8 bar. Rotor speed run-up tests to 35 krpm show that bearing end side feed gas pressurization delays the onset speed of rotor subsynchronous whirl motions. The test data validate closely predictions of the threshold speed of instability and whirl frequency ratio derived from a GFB model that implements the axial evolution of gas circumferential flow velocity as a function of the imposed side feed pressure. Rotor speed coastdown tests from 25 krpm with a low feed pressure of 0.35 bar evidences a nearly linear synchronous rotor response for small and moderately large imbalance mass distributions. A structural FE rotordynamics model integrates linearized synchronous speed GFB force coefficients and predicts synchronous responses, amplitude and phase angle, agreeing with the test data. The analysis and measurements demonstrate the profound effect of end side, feed gas pressurization on the rotordynamic performance of GFBs.


Author(s):  
Tae Ho Kim ◽  
Luis San Andrés

Comprehensive modeling of gas foil bearings (GFBs) anchored to reliable test data will enable the widespread usage of these bearings into novel high speed turbomachinery applications. GFBs often need a forced cooling gas flow, axially fed through one end of the bearing, for adequate thermal management. This paper presents rotordynamic response measurements on a rigid rotor supported on GFBs during rotor speed run-up and coastdown tests with the GFBs supplied with increasing feed gas pressures to 2.8bars. Rotor speed run-up tests to 35krpm show that the bearing end side feed gas pressurization delays the onset speed of rotor subsynchronous whirl motions. The test data validate closely the predictions of the threshold speed of instability and the whirl frequency ratio derived from a GFB model that implements the axial evolution of gas circumferential flow velocity as a function of the imposed side feed pressure. Rotor speed coastdown tests from 25krpm with a low feed pressure of 0.35bar evidence a nearly linear synchronous rotor response for small and moderately large imbalance mass distributions. A structural finite element rotordynamics model integrates linearized synchronous speed GFB force coefficients and predicts synchronous responses, amplitude, and phase angles, agreeing with the test data. The analysis and measurements demonstrate the profound effect of the end side feed gas pressurization on the rotordynamic performance of GFBs.


2005 ◽  
Vol 127 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Chris Holt ◽  
Luis San Andre´s ◽  
Sunil Sahay ◽  
Peter Tang ◽  
Gerry La Rue ◽  
...  

Measurements of casing acceleration on an automotive turbocharger running to a top speed of 115 krpm and driven by ambient temperature pressurized air are reported. Waterfall acceleration spectra versus rotor speed show the effects of increasing lubricant inlet pressure and temperature on turbocharger rotordynamic response. A comprehensive analysis of the test data shows regimes of speed operation with two subsynchronous whirl motions (rotordynamic instabilities). Increasing the lubricant feed pressure delays the onset speed of instability for the most severe subsynchronous motion. However, increasing the lubricant feed pressure also produces larger synchronous displacements. The effect of lubricant feed temperature is minimal on the onset and end speeds of rotordynamic instability. Nevertheless, operation with a cold lubricant exhibits lower amplitudes of motion, synchronous and subsynchronous. The experimental results show the subsynchronous frequencies of motion do not lock (whip) at system natural frequencies but continuously track the rotor speed. No instabilities (subsynchronous whirl) remain for operating speeds above 90 krpm. Linear and nonlinear analysis results for the operation of a small automotive turbocharger supported on floating ring bearings are presented. A comprehensive fluid film bearing model predicting the forced response of floating ring bearings is also described. The linear rotordynamic model predicts well the rotor free–free modes and onset speed of instability using linearized bearing force coefficients. The nonlinear model incorporating instantaneous bearing reaction forces in the numerical integration of the rotor equations of motion predicts the limit cycle amplitudes with two fundamental subsynchronous whirl frequencies. Comparisons of both models to experimental results follow. The predictions evidence two unstable whirl ratios at approximately 12 ring speed and 12 ring speed plus 12 journal speed. The transient nonlinear responses reveal the importance of rotor imbalance in suppressing the subsynchronous instabilities at large rotor speeds as also observed in the experiments.


Author(s):  
Luis San Andrés ◽  
Jing Yang ◽  
Rimpei Kawashita

Abstract Gas labyrinth seals (LSs) improve turbomachinery operational efficiency and mechanical reliability by reducing secondary leakage. As interlocking labyrinth seals (ILSs) restrict more leakage than conventional see-through LSs, attention is due to their performance. An earlier paper [1] details the performance of a particular ILS in an ad-hoc test rig via measurements of mass flow (leakage) and cavity pressures while supplied with pressurized air at ambient temperature and operating with a rotor speed to a maximum of 10 krpm (surface speed 79 m/s). The test seal comprises of two teeth on the rotor and three teeth on the stator to make a four cavity seal with radial clearance Cr = 0.2 mm. The experimental and numerical leakages for the ILS produce a modified flow factor (Φ¯) that is independent of the seal operating conditions, namely inlet pressure, discharge pressure and rotor speed. The finding leads to an orifice-like loss coefficient cd = 0.36 and an effective clearance (cd × Cr) for the test seal, thus evidencing its effectiveness in reducing leakage. To complement the former research, this paper reports measurements of the leakage and cavity pressures for the same geometry interlocking labyrinth seals configured with two other clearances Cr = 0.3 mm and 0.13 mm. For the ILS with Cr = 0.3 mm, a first configuration is without a swirl brake (baseline), the second is with a swirl brake with 0° teeth pitch (axial ribs), and the third configuration is with a swirl brake with teeth angled at 40° in the direction of shaft rotation. For tests conducted without shaft rotation and with rotor spinning at 7.5 krpm (surface speed = 59 m/s), the inlet air pressure (Pin) ranges from 0.29 MPa to 0.98 MPa, while the exit pressure (Pout) is set to pressure ratios PR = (Pout/Pin) = 0.3, 0.5, 0.8. As to the ILS with Cr = 0.13 mm, it operates with an upstream swirl brake with axial ribs (0° teeth pitch) and w/o rotor speed. The supply pressure (Pin) varies from 0.59 MPa to 1.4 MPa and PR = 0.3, 0.5. The measurements and bulk-flow model predictions show that the seal mass leakage is proportional to the inlet pressure (Pin), increases as PR decreases, and is not affected by either shaft speed or the swirl brake configuration. Seal cavity static pressures drop linearly for all inlet pressures (Pin) and PR = 0.5 and above; except under a choked flow condition at PR = 0.3. Processing of the test data to consolidate the numerous leakage measurements delivers a nearly invariant flow factor Φ¯ for each seal clearance, and from this follows a unique orifice-like loss coefficient cd = 0.36 for the ILS with Cr = 0.3 mm, and cd = 0.33 for the ILS with Cr = 0.13 mm. This finding is remarkable as the test results obtained for the ILS with Cr = 0.2 mm also deliver a similar loss coefficient (cd = 0.36). Finally, predictions of ILS leakage and cavity pressures are within 5% of the measurements for all test conditions. The test data and predictions are of significant value to better the selection and design of gas labyrinth seals in turbomachinery.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Sergio Vincenzo Calcina ◽  
Laura Eltrudis ◽  
Luca Piroddi ◽  
Gaetano Ranieri

This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012) and at the end of winter (March 2013), respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results.


Author(s):  
Sangchae Kim ◽  
Bharath Bethala ◽  
Simone Ghirlanda ◽  
Senthil N. Sambandam ◽  
Shekhar Bhansali

Magnetocaloric refrigeration is increasingly being explored as an alternative technology for cooling. This paper presents the design and fabrication of a micromachined magnetocaloric cooler. The cooler consists of fluidic microchannels (in a Si wafer), diffused temperature sensors, and a Gd5(Si2Ge2) magnetocaloric refrigeration element. A magnetic field of 1.5 T is applied using an electromagnet to change the entropy of the magnetocaloric element for different ambient temperature conditions ranging from 258 K to 280 K, and the results are discussed. The tests show a maximum temperature change of 7 K on the magnetocaloric element at 258 K. The experimental results co-relate well with the entropy change of the material.


2021 ◽  
pp. 1-31
Author(s):  
Xueliang Lu ◽  
Luis San Andres ◽  
Jing Yang

Abstract Seals in multiple phase rotordynamic pumps must operate without compromising system efficiency and stability. Both field operation and laboratory experiments show that seals supplied with a gas in liquid mixture (bubbly flow) can produce rotordynamic instability and excessive rotor vibrations. This paper advances a nonhomogeneous bulk flow model (NHBFM) for the prediction of the leakage and dynamic force coefficients of uniform clearance annular seals lubricated with gas in liquid mixtures. Compared to a homogeneous BFM (HBFM), the current model includes diffusion coefficients in the momentum transport equations and a field equation for the transport of the gas volume fraction (GVF). Published experimental leakage and dynamic force coefficients for two seals supplied with an air in oil mixture whose GVF varies from 0 (pure liquid) to 20% serve to validate the novel model as well as to benchmark it against predictions from a HBFM. The first seal withstands a large pressure drop (~ 38 bar) and the shaft speed equals 7.5 krpm. The second seal restricts a small pressure drop (1.6 bar) as the shaft turns at 3.5 krpm. The first seal is typical as a balance piston whereas the second seal is found as a neck-ring seal in an impeller. For the high pressure seal and inlet GVF = 0.1, the flow is mostly homogeneous as the maximum diffusion velocity at the seal exit plane is just ~0.1% of the liquid flow velocity. Thus, both the NHBFM and HBFM predict similar flow fields, leakage (mass flow rate) and drag torque. The difference between the predicted leakage and measurement is less than 5%. The NHBFM direct stiffness (K) agrees with the experimental results and reduces faster with inlet GVF than the HBFM K. Both direct damping (C) and cross-coupled stiffness (k) increase with inlet GVF < 0.1.Compared to the test data, the two models generally under predict C and k by ~ 25%. Both models deliver a whirl frequency ratio (fw) ~ 0.3 for the pure liquid seal, hence closely matching the test data. fw raises to ~0.35 as the GVF approaches 0.1. For the low pressure seal the flow is laminar, the experimental results and both NHBFM and HBFM predict a null direct stiffness (K). At an inlet GVF = 0.2, the NHBFM predicted added mass (M) is ~30 % below the experimental result while the HBFM predicts a null M. C and k predicted by both models are within the uncertainty of the experimental results. For operation with either a pure liquid or a mixture (GVF = 0.2), both models deliver fw = 0.5 and equal to the experimental finding. The comparisons of predictions against experimental data demonstrate the NHBFM offers a marked improvement, in particular for the direct stiffness (K). The predictions reveal the fluid flow maintains the homogeneous character known at the inlet condition.


Author(s):  
Mariusz Węgrzyn ◽  
Ernest Jamro ◽  
Agnieszka Dąbrowska-Boruch ◽  
Kazimierz Wiatr

This paper describes a new optimization methodology of testing vector sets reduction for testing of soft-processor cores and their individual blocks. The deterministic test vectors both for whole core and its individual blocks are investigated that significantly reduce the testing time and amount of test data that needs to be stored on the tester memory. The processor executes an assembler program which together with determined testing vectors ex-ercise its functionality. The new BIST methodology applicable at industrial testing of processor cores, diagnostics and dynamic reconfiguration of FPGA is proposed. This novel methodology combined with dynamic reconfiguration of FPGAs can be profitable applied for missions-critical i.e. FPGAs operate in space, or other difficult condition where are explore on radiation. Experimental results demonstrate that the proposed approach reduces many times testing time.


2020 ◽  
Vol 191 (4) ◽  
pp. 409-422
Author(s):  
Bo Tan ◽  
Guangyuan Yang ◽  
Shuhui Fu ◽  
Cheng Xu

Abstract The high radon concentration in the underground space of the subway station during construction often endangers the health of workers. Subway station project No. 16 in Beijing, while under construction, was selected as the main measuring point, a year’s monitoring data was obtained to analyse the change of radon concentration. It was found that the concentration of radon was basically within the range of 5 ~ 500 Bq/m3 and showing a low level in the morning and a high level at noon, and presents the seasonal rule, compared with other seasons, the summer radiation is stronger. Furthermore, among the different measuring points, the radon concentration of the heading roadway is the highest, and the construction level of the station hall is the lowest. According to the comprehensive analysis, the concentration of radon during the construction of the subway station is mainly affected by the ambient temperature and air mobility.


Sign in / Sign up

Export Citation Format

Share Document