Degenerate Cases in Using the Direct Method

Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A practical stability analysis, the Direct Method, for linear time invariant, time delayed systems (LTI-TDS) is revisited in this work considering the degenerate system dynamics. The principal strengths and enabling novelties of the method are reviewed along with its structured steps involved for assessing the stability. Uncommon in the literature, the Direct Method can handle large dimensional systems (e.g. larger than 2) very comfortably, it returns an explicit formula for the exact stability posture of the system for a given time delay, as such it reveals the possible detached stability pockets throughout the time delay axis. Both retarded and neutral classes of LTI-TDS are considered in this work. The main contribution here is to demonstrate the ability of the Direct Method in tackling degenerate cases. Along with the analytical arguments, example case studies are provided for a group of degeneracies. It is shown that the new method is capable of resolving them without any difficulty.

2003 ◽  
Vol 125 (2) ◽  
pp. 194-201 ◽  
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A recent stability analysis, the Direct Method, for linear time invariant, time delayed systems (LTI-TDS) is revisited in this work considering the degenerate system dynamics. The principal strengths and enabling novelties of the method are reviewed along with its structured steps involved for assessing the stability. Uncommon in the literature, the Direct Method can handle large dimensional systems (e.g., larger than two) very comfortably. It returns an explicit formula for the exact stability posture of the system for a given time delay, as such it reveals the possible detached stability pockets throughout the time delay axis. Both retarded and neutral classes of LTI-TDS are considered in this work. The main contribution here is to demonstrate the ability of the Direct Method in tackling degenerate cases. Along with the analytical arguments, example case studies are provided for a group of degeneracies. It is shown that the new method is capable of resolving them without any difficulty.


Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A novel treatment for the stability of a class of linear time invariant (LTI) systems with rationally independent multiple time delays using the Direct Method (DM) is studied. Since they appear in many practical applications in the systems and control community, this class of dynamics has attracted considerable interest. The stability analysis is very complex because of the infinite dimensional nature (even for single delay) of the dynamics and furthermore the multiplicity of these delays. The stability problem is much more challenging compared to the TDS with commensurate time delays (where time delays have rational relations). It is shown in an earlier publication of the authors that the DM brings a unique, exact and structured methodology for the stability analysis of commensurate time delayed cases. The transition from the commensurate time delays to multiple delay case motivates our study. It is shown that the DM reveals all possible stability regions in the space of multiple time delays. The systems that are considered do not have to possess stable behavior for zero delays. We present a numerical example on a system, which is considered “prohibitively difficult” in the literature, just to exhibit the strengths of the new procedure.


2003 ◽  
Vol 125 (3) ◽  
pp. 384-388 ◽  
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

Various active vibration suppression techniques, which use feedback control, are implemented on the structures. In real application, time delay can not be avoided especially in the feedback line of the actively controlled systems. The effects of the delay have to be thoroughly understood from the perspective of system stability and the performance of the controlled system. Often used control laws are developed without taking the delay into account. They fulfill the design requirements when free of delay. As unavoidable delay appears, however, the performance of the control changes. This work addresses the stability analysis of such dynamics as the control law remains unchanged but carries the effect of feedback time-delay, which can be varied. For this stability analysis along the delay axis, we follow up a recent methodology of the authors, the Direct Method (DM), which offers a unique and unprecedented treatment of a general class of linear time invariant time delayed systems (LTI-TDS). We discuss the underlying features and the highlights of the method briefly. Over an example vibration suppression setting we declare the stability intervals of the dynamics in time delay space using the DM. Having assessed the stability, we then look at the frequency response characteristics of the system as performance indications.


Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

Most control systems are contaminated with some level of time delay. Whether it appears due to the inherent system dynamics or because of the sensory feedback, the delay has to be resolved regarding the system stability. We explain an unprecedented and fundamental treatment of time delay in a general class of linear time invariant systems (LTI) following a strategy, which we call the ‘Direct Method’. The strengths of the method lie in recognizing two interesting and novel features, which are typical for this class of systems. These features enable a structured strategy to be formed for analyzing the stability of LTI-TDS (Time Delayed Systems). Vibration control settings are not immune from time delay effects. We present a case study on active control of vibration using linear full state feedback. We then apply the Direct Method on this structure to display the stability outlook along the axis of delay. There appears an interesting property, which is related to the determination of the imaginary (i.e. marginally stable) roots of LTI-TDS. We state a general lemma and proof on this point.


Author(s):  
Qingbin Gao ◽  
Umut Zalluhoglu ◽  
Nejat Olgac

It has been shown that the stability of LTI time-delayed systems with respect to the delays can be analyzed in two equivalent domains: (i) delay space (DS) and (ii) spectral delay space (SDS). Considering a broad class of linear time-invariant time delay systems with multiple delays, the equivalency of the stability transitions along the transition boundaries is studied in both spaces. For this we follow two corresponding radial lines in DS and SDS, and prove for the first time in literature that they are equivalent. This property enables us to extract local stability transition features within the SDS without going back to the DS. The main advantage of remaining in SDS is that, one can avoid a non-linear transition from kernel hypercurves to offspring hypercurves in DS. Instead the potential stability switching curves in SDS are generated simply by stacking a finite dimensional cube called the building block (BB) along the axes. A case study is presented within the report to visualize this property.


Author(s):  
Nejat Olgac ◽  
Rifat Sipahi

A new methodology is presented for assessing the stability posture of a general class of linear time-invariant – neutral time-delayed systems (LTI-NTDS). It is based on a “Cluster Treatment of Characteristic Roots CTCR” paradigm. The technique offers a number of unique features: It returns exact bounds of time delay for stability, furthermore it yields the number of unstable characteristic roots of the system in an explicit and non-sequentially evaluated function of time delay. As a direct consequence of the latter feature, the new methodology creates entirely, all existing stability intervals of delay, τ. It is shown that the CTCR inherently enforces an intriguing necessary condition for τ-stabilizability, which is the main contribution of this paper. This, so called “small delay” effect, was recognized earlier for NTDS, only through some cumbersome mathematics. In addition to the above listed characteristics, the CTCR is also unique in handling systems with unstable starting posture for τ = 0, which may be τ-stabilized for higher values of delay. Example cases are provided.


Author(s):  
Ryan R. Jenkins ◽  
Nejat Olgac

The dynamics we treat here is a very special and degenerate class of linear time-invariant time-delayed systems (LTI-TDS) with commensurate delays, which exhibit a double imaginary root for a particular value of the delay. The stability behavior of the system within the immediate proximity of this parametric setting which creates the degenerate dynamics is investigated. Several recent investigations also handled this class of systems from the perspective of calculus of variations. We approach the same problem from a different angle, using a recent paradigm called Cluster Treatment of Characteristic Roots (CTCR). We convert one of the parameters in the system into a variable and perturb it around the degenerate point of interest, while simultaneously varying the delay. Clearly, only a particular selection of this arbitrary parameter and the delay enforce the degeneracy. All other adjacent points would be free of the mentioned degeneracy, and therefore can be handled with the CTCR paradigm. Analysis then reveals that the parametrically limiting stability behavior of the dynamics can be extracted by simply using CTCR. The results are shown to be very much aligned with the other investigations on the problem. Simplicity and numerical speed of CTCR may be considered as practical advantages in analyzing such systems. This approach also exhibits the capabilities of CTCR in handling these degenerate cases contrary to the convictions in earlier reports. An example case study is provided to demonstrate these features.


Sign in / Sign up

Export Citation Format

Share Document