Stability Analysis of Multiple Time Delayed Systems Using the Direct Method

Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A novel treatment for the stability of a class of linear time invariant (LTI) systems with rationally independent multiple time delays using the Direct Method (DM) is studied. Since they appear in many practical applications in the systems and control community, this class of dynamics has attracted considerable interest. The stability analysis is very complex because of the infinite dimensional nature (even for single delay) of the dynamics and furthermore the multiplicity of these delays. The stability problem is much more challenging compared to the TDS with commensurate time delays (where time delays have rational relations). It is shown in an earlier publication of the authors that the DM brings a unique, exact and structured methodology for the stability analysis of commensurate time delayed cases. The transition from the commensurate time delays to multiple delay case motivates our study. It is shown that the DM reveals all possible stability regions in the space of multiple time delays. The systems that are considered do not have to possess stable behavior for zero delays. We present a numerical example on a system, which is considered “prohibitively difficult” in the literature, just to exhibit the strengths of the new procedure.

2006 ◽  
Vol 129 (3) ◽  
pp. 245-251 ◽  
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A novel treatment for the stability of linear time invariant (LTI) systems with rationally independent multiple time delays is presented in this paper. The independence of delays makes the problem much more challenging compared to systems with commensurate time delays (where the delays have rational relations). We uncover some wonderful features for such systems. For instance, all the imaginary characteristic roots of these systems can be found exhaustively along a set of surfaces in the domain of the delays. They are called the “kernel” surfaces (curves for two-delay cases), and it is proven that the number of the kernel surfaces is manageably small and bounded. All possible time delay combinations, which yield an imaginary characteristic root, lie either on this kernel or its infinitely many “offspring” surfaces. Another hidden feature is that the root tendencies along these surfaces exhibit an invariance property. From these outstanding characteristics an efficient, exact, and exhaustive methodology results for the stability assessment. As an added uniqueness of this method, the systems under consideration do not have to be stable for zero delays. Several example case studies are presented, which are prohibitively difficult, if not impossible to solve using any other peer methodology known to the authors.


Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A novel treatment for the stability of linear time invariant (LTI) systems with rationally independent multiple time delays is presented. The independence of delays makes the problem much more challenging compared to the systems with commensurate time delays (where the delays have rational relations). It is shown that the imaginary characteristic roots can all be found along a set of curves in the domain of the delays. They are called the “kernel curves”, and it is proven that their number is small and bounded. All possible time delay combinations, which yield an imaginary characteristic root, lie on a curve so called the offspring of the kernel curves within the domain of the delays. We also claim that the root tendencies show a very interesting invariance property as a test point crosses these curves. An efficient, exact and exhaustive methodology results from these outstanding characteristics. It is unique to the new methodology that, the systems under consideration do not have to possess stable behavior for zero delays. Several example case studies are presented, which are prohibitively difficult, if not impossible to solve using any other peer methodology.


Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A practical stability analysis, the Direct Method, for linear time invariant, time delayed systems (LTI-TDS) is revisited in this work considering the degenerate system dynamics. The principal strengths and enabling novelties of the method are reviewed along with its structured steps involved for assessing the stability. Uncommon in the literature, the Direct Method can handle large dimensional systems (e.g. larger than 2) very comfortably, it returns an explicit formula for the exact stability posture of the system for a given time delay, as such it reveals the possible detached stability pockets throughout the time delay axis. Both retarded and neutral classes of LTI-TDS are considered in this work. The main contribution here is to demonstrate the ability of the Direct Method in tackling degenerate cases. Along with the analytical arguments, example case studies are provided for a group of degeneracies. It is shown that the new method is capable of resolving them without any difficulty.


2003 ◽  
Vol 125 (2) ◽  
pp. 194-201 ◽  
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A recent stability analysis, the Direct Method, for linear time invariant, time delayed systems (LTI-TDS) is revisited in this work considering the degenerate system dynamics. The principal strengths and enabling novelties of the method are reviewed along with its structured steps involved for assessing the stability. Uncommon in the literature, the Direct Method can handle large dimensional systems (e.g., larger than two) very comfortably. It returns an explicit formula for the exact stability posture of the system for a given time delay, as such it reveals the possible detached stability pockets throughout the time delay axis. Both retarded and neutral classes of LTI-TDS are considered in this work. The main contribution here is to demonstrate the ability of the Direct Method in tackling degenerate cases. Along with the analytical arguments, example case studies are provided for a group of degeneracies. It is shown that the new method is capable of resolving them without any difficulty.


2003 ◽  
Vol 125 (3) ◽  
pp. 384-388 ◽  
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

Various active vibration suppression techniques, which use feedback control, are implemented on the structures. In real application, time delay can not be avoided especially in the feedback line of the actively controlled systems. The effects of the delay have to be thoroughly understood from the perspective of system stability and the performance of the controlled system. Often used control laws are developed without taking the delay into account. They fulfill the design requirements when free of delay. As unavoidable delay appears, however, the performance of the control changes. This work addresses the stability analysis of such dynamics as the control law remains unchanged but carries the effect of feedback time-delay, which can be varied. For this stability analysis along the delay axis, we follow up a recent methodology of the authors, the Direct Method (DM), which offers a unique and unprecedented treatment of a general class of linear time invariant time delayed systems (LTI-TDS). We discuss the underlying features and the highlights of the method briefly. Over an example vibration suppression setting we declare the stability intervals of the dynamics in time delay space using the DM. Having assessed the stability, we then look at the frequency response characteristics of the system as performance indications.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jun Zhou ◽  
Ketian Gao ◽  
Xinbiao Lu

Based on complex scaling, the paper copes with stability analysis and stabilization of linear time-invariant continuous-time systems with multiple time delays in state, control input, and measured output, under state and/or output feedback. More specifically, the paper establishes stability criteria for exponential/asymptotical stability with Hurwitz complex scaling being applied to the related characteristic polynomials. The stability conditions are necessary and sufficient, delay-dependent, and independent of feedback structures and open-loop poles distribution. The criteria can be implemented graphically with locus plotting or numerically without it; moreover, no prior frequency sweeping is involved, and the contour and locus encirclement orientations can be self-defined. Exploiting the complex scaling approach and embracing its technical merits, it is considered to design static state feedback control for robustly stabilizing time-delayed systems. A small-gain interpretation for the suggested stabilization is also elaborated. Examples are included to illustrate the main results.


2019 ◽  
Vol 9 (20) ◽  
pp. 4348 ◽  
Author(s):  
Bo Li ◽  
Yun Wang ◽  
Xiaobing Zhou

Multi-switching combination synchronization of three fractional-order delayed systems is investigated. This is a generalization of previous multi-switching combination synchronization of fractional-order systems by introducing time-delays. Based on the stability theory of linear fractional-order systems with multiple time-delays, we propose appropriate controllers to obtain multi-switching combination synchronization of three non-identical fractional-order delayed systems. In addition, the results of our numerical simulations show that they are in accordance with the theoretical analysis.


Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

Most control systems are contaminated with some level of time delay. Whether it appears due to the inherent system dynamics or because of the sensory feedback, the delay has to be resolved regarding the system stability. We explain an unprecedented and fundamental treatment of time delay in a general class of linear time invariant systems (LTI) following a strategy, which we call the ‘Direct Method’. The strengths of the method lie in recognizing two interesting and novel features, which are typical for this class of systems. These features enable a structured strategy to be formed for analyzing the stability of LTI-TDS (Time Delayed Systems). Vibration control settings are not immune from time delay effects. We present a case study on active control of vibration using linear full state feedback. We then apply the Direct Method on this structure to display the stability outlook along the axis of delay. There appears an interesting property, which is related to the determination of the imaginary (i.e. marginally stable) roots of LTI-TDS. We state a general lemma and proof on this point.


Sign in / Sign up

Export Citation Format

Share Document