Multi-Stage Modeling of Turbine Engine Rotor Vibration

Author(s):  
Sang Heon Song ◽  
Matthew P. Castanier ◽  
Christophe Pierre

In this study, an efficient approach for modeling the vibration of multi-stage rotors is proposed in order to allow more realistic predictions of the free and forced response of bladed disks. The reduced-order modeling approach is based on component mode synthesis, with each stage (bladed disk) treated as a separate component. Thus, each component retains cyclic symmetry, and single-sector models may be used for calculating the component modes. Because adjacent stages typically have different numbers of blades, the single-stage models are synthesized by projecting the stage-to-stage interface motion onto a common basis of circumferentially harmonic shapes. In this manner, any mismatch between sector sizes and finite element meshes at the interface can be handled systematically and automatically, without requiring additional multi-point constraints. For further size reduction, secondary modal analysis is performed on the entire synthesized model. Therefore, only a small set of multi-stage modes are retained in the final reduced-order model, yielding an extremely compact model that retains high accuracy relative to the parent finite element model.

Author(s):  
Akira Saito ◽  
Matthew P. Castanier ◽  
Christophe Pierre

An efficient methodology for predicting the nonlinear forced vibration response of a turbine engine rotor with a cracked blade is presented and used to investigate the effects of the damage on the forced response. The effects of small, random blade-to-blade differences (mistuning) and rotation on the forced response are also considered. Starting with a finite element model, a hybrid-interface method of Component Mode Synthesis (CMS) is employed to generate a reduced-order model (ROM). The crack surfaces are retained as physical degrees of freedom in the ROM so that the forces due to contact interaction in three-dimensional space can be properly calculated. The resulting nonlinear equations of steady-state motion are solved by applying an alternating frequency/time-domain method, which is much more computationally efficient than traditional time integration. Using this reduced-order modeling and analysis framework, the effects of the cracked blade on the system response are investigated for various mistuning levels and rotation speeds. First, the advantages of the selected hybrid-interface CMS method are discussed and demonstrated. Then, the resonant frequency shift associated with the stiffness loss due to the crack, as well as vibration localization about the cracked blade are thoroughly investigated. In addition, the results of the nonlinear ROMs are compared to those obtained with linear ROMs as well as blade-alone ROMs. It is shown that several key system vibration characteristics are not captured by the simpler models, but that some insight into the system response can be gained from the blade-alone response predictions. Furthermore, it is demonstrated that while the effects of the crack often appear similar those of mistuning, differences between the effects of mistuning and damage can be discerned by observing and comparing the response across different families of system modes.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Akira Saito ◽  
Matthew P. Castanier ◽  
Christophe Pierre

An efficient methodology for predicting the nonlinear forced vibration response of a turbine engine rotor with a cracked blade is presented and used to investigate the effects of the damage on the forced response. The influence of small random blade-to-blade differences (mistuning) and rotation on the forced response are also considered. Starting with a finite element model, a hybrid-interface method of component mode synthesis (CMS) is employed to generate a reduced-order model (ROM). The crack surfaces are retained as physical degrees of freedom in the ROM so that the forces due to contact in three-dimensional space can be properly calculated. The resulting nonlinear equations of steady-state motion are solved by applying an alternating frequency/time-domain method, which is much more computationally efficient than traditional time integration. Using this reduced-order modeling and analysis framework, the effects of the cracked blade on the system response of an example rotor are investigated for various mistuning levels and rotation speeds. First, the advantages of the selected hybrid-interface CMS method are discussed and demonstrated. Then, the resonant frequency shift associated with the stiffness loss due to the crack and the vibration localization about the cracked blade are thoroughly investigated. In addition, the results of the nonlinear ROMs are compared with those obtained with linear ROMs, as well as blade-alone ROMs. It is shown that several key system vibration characteristics are not captured by the simpler models, but that some insight into the system response can be gained from the blade-alone response predictions. Furthermore, it is demonstrated that while the effects of the crack often appear similar to those of mistuning, the effects of mistuning and damage can be distinguished by observing and comparing the response across multiple families of system modes.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Chih-Neng Hsu

Complex mode and single mode approach analyses are individually developed to predict blade flutter and forced response. These analyses provide a system approach for predicting potential aeroelastic problems of blades. The flow field properties of a blade are analyzed as aero input and combined with a finite element model to calculate the unsteady aero damping of the blade surface. Forcing function generators, including inlet and distortions, are provided to calculate the forced response of turbomachinery blading. The structural dynamic characteristics are obtained based on the blade mode shape obtained by using the finite element model. These approaches can provide turbine engine manufacturers, cogenerators, gas turbine generators, microturbine generators, and engine manufacturers with an analysis system to remedy existing flutter and forced response methods. The findings of this study can be widely applied to fans, compressors, energy turbine power plants, electricity, and cost saving analyses.


Author(s):  
Bartolome´ Segui´ ◽  
Euro Casanova

This paper presents a reduced-order modeling technique, based on a component mode synthesis method specifically tailored for bladed disks, that allows the resulting low-order model to be attached to a shaft. Mistuning is included in the bladed disk model and the shaft is modeled using uniaxial finite elements according to the rotordynamic approach. The proposed formulation is applied to an example finite element model of a bladed disk, for both tuned and mistuned blades. Comparisons are made between the reduced model and the full finite element solution for free and forced responses in order to assess the methodology. The forced response amplitudes of the blades are found to vary significantly with the inclusion of a flexible shaft. This work suggest that stage independent analyses might not be adequate for predicting the global dynamic response of rotating assemblies of turbomachines.


Author(s):  
Yasharth Bhartiya ◽  
Alok Sinha

An algorithm to generate a reduced order model of a multi-stage rotor in which each stage has a different number of blades has been developed. It is shown that a reduced order model can be developed on the basis of tuned modes of certain bladed disks which can be easily obtained via sector analyses. Further, it is shown that reduced order model can also be obtained when blades are geometrically mistuned. This algorithm is similar to the modified modal domain analysis, which has been recently developed for a single-stage bladed rotor with geometric mistuning. The validity of this algorithm is shown for the finite element model of a two-stage bladed rotor. In addition, the statistical distributions of peak maximum amplitudes and natural frequencies of a two-stage rotor are generated via Monte Carlo simulations for different patterns of geometric mistuning.


Author(s):  
Johann Gross ◽  
Malte Krack ◽  
Harald Schoenenborn

The prediction of aerodynamic blade forcing is a very important topic in turbomachinery design. Usually, the wake from the upstream blade row and the potential field from the downstream blade row are considered as the main causes for excitation, which in conjunction with relative rotation of neighboring blade rows, give rise to dynamic forcing of the blades. In addition to those two mechanisms so-called Tyler-Sofrin (or scattered or spinning) modes, which refer to the acoustic interaction with blade rows further up- or downstream, may have a significant impact on blade forcing. In particular, they lead to considerable blade-to-blade variations of the aerodynamic loading. In part 1 of the paper a study of these effects is performed on the basis of a quasi 3D multi-row and multi-passage compressor configuration. Part 2 of the paper proposes a method to analyze the interaction of the aerodynamic forcing asymmetries with the already well-studied effects of random mistuning stemming from blade-to-blade variations of structural properties. Based on a finite element model of a sector, the equations governing the dynamic behavior of the entire bladed disk can be efficiently derived using substructuring techniques. The disk substructure is assumed as cyclically symmetric, while the blades exhibit structural mistuning and linear aeroelastic coupling. In order to avoid the costly multi-stage analysis, the variation of the aerodynamic loading is treated as an epistemic uncertainty, leading to a stochastic description of the annular force pattern. The effects of structural mistuning and stochastic aerodynamic forcing are first studied separately and then in a combined manner for a blisk of a research compressor without and with aeroelastic coupling.


Author(s):  
M. Vahdati ◽  
C. Breard ◽  
G. Simpson ◽  
M. Imregun

This paper will focus on core-compressor forced response with the aim to develop two design criteria, the so-called chordwise cumulative modal force and heightwise cumulative force, to assess the potential severity of the vibration levels from the correlation between the unsteady pressure distribution on the blade’s surface and the structural modeshape. It is also possible to rank various blade designs since the proposed criterion is sensitive to changes in both unsteady aerodynamic loads and the vibration modeshapes. The proposed methodology was applied to a typical core-compressor forced response case for which measured data were available. The Reynolds-averaged Navier-Stokes equations were used to represent the flow in a non-linear time-accurate fashion on unstructured meshes of mixed elements. The structural model was based on a standard finite element representation from which the vibration modes were extracted. The blade flexibility was included in the model by coupling the finite element model to the unsteady flow model in a time-accurate fashion. A series of numerical experiments were conducted by altering the stator wake and using the proposed indicator functions to minimize the rotor response levels. It was shown that a fourfold response reduction was possible for a certain mode with only a minor modification of the blade.


Sign in / Sign up

Export Citation Format

Share Document