turbomachinery design
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
R. Senthil Kumaran ◽  
Dilipkumar B. Alone ◽  
Abdul Nassar ◽  
Pramod Kumar

Abstract Axial turbines are gaining prominence in supercritical carbon-di-oxide (S-CO2) Brayton cycle power blocks. S-CO2 Brayton cycle power systems designed for 10 MW and upwards will need axial turbines for efficient energy conversion and compact construction. The real gas behavior of S-CO2 and its rapid property variations with temperature presents a strong challenge for turbomachinery design. Applying gas and steam turbine philosophies directly to S-CO2 turbine could lead to erroneous designs. Very little information is available in the open literature on the design of S-CO2 axial turbines. In this paper, design of a 10 MW axial turbine for a simple recuperated Brayton cycle waste heat recovery system is presented. Three repeating stages with nominal stage loading coefficient of 2.3 and flow coefficient of 0.37 were designed. An axial turbine mean-line design method tuned to S-CO2 real gas fluid medium is discussed. 3D blade design was made suing commercial turbomachinery design software AxSTREAM. The turbine was designed for inlet temperature of 818.15 K, pressure ratio of 2.2, rotational speed of 12000 rpm and mass flow rate of 104.5 kg/s. 3D CFD simulations were carried out using the commercial RANS solver ANSYS CFX 2020 R2 with SST turbulence model for closure. S-CO2 was modelled as real gas with Refrigerant Gas Property tables generated over the appropriate pressure and temperature ranges using NIST Refprop database. CFD studies were carried out over a range of mass flow rates and speeds, covering the design and several off-design conditions. The performance maps generated using 3D CFD simulations of the turbine are presented. The geometrical parameters obtained with the mean-line design matched well with that of the 3D turbine design arrived using AxSTREAM. It was observed that the turbine produced 10 MW power at the design condition while passing the required mass flow. CFD studies also showed that the preliminary turbine design achieved a moderate total-to-total efficiency of 80 % at the design condition. The design has potential for further optimization to obtain improved efficiency and for reducing the number of stages from three to two.


2021 ◽  
Author(s):  
Ashwin Kannan ◽  
Krishna Kishor Dubasi ◽  
Dr Adele Nasti ◽  
Akin Keskin ◽  
Joshua Clough

Author(s):  
Bugra Ertas

Abstract The following paper presents a new type of gas lubricated thrust bearing fabricated using additive manufacturing or direct metal laser melting (DMLM). The motivation for the new bearing concept is derived from the need for highly efficient supercritical carbon dioxide turbomachinery in the mega-watt power range. The paper provides a review of existing gas thrust bearing technologies, outlines the need for the new DMLM concept, and discusses proof of concept testing results. The new concept combines hydrostatic pressurization with individual flexibly mounted pads using hermetic squeeze film dampers in the bearing-pad support. Proof-of-concept testing in air for a 6.8" (173mm) outer diameter thrust bearing was performed; with loads up to 1,500 lbs (6.67kN) and a rotating speed of 10krpm (91 m/s tip speed). The experiments were performed with a bent shaft resulting in thrust runner axial vibration magnitudes of 2.9mils (74microns) p-p and dynamic thrust loads of 270 lbs (1.2kN) p-p. In addition, force deflection characteristics of the bearing system are presented for an inlet hydrostatic pressure of 380psi (2.62MPa). Results at 10krpm show that the pad support architecture was able to sustain high levels of dynamic misalignment equaling 6 times the nominal film clearance while demonstrating a unit load carrying capacity of 55psi (0.34Mpa). Gas-film force-deflection tests portrayed nonlinear behavior like a hardening spring, while the pad support stiffness was measured to be linear and independent of film thickness.


Author(s):  
Matthias Schuff ◽  
Virginie Anne Chenaux

Abstract Current trends in turbomachinery design significantly reduce the mass ratio of structure to air, making them prone to flutter by aerodynamic coupling between mode shapes, also called coupled-mode flutter. The p-k method, which solves an aeroelastic eigenvalue problem for frequency and damping respectively excitation of the aerodynamically coupled system, was adapted for turbomachinery application using aerodynamic responses computed in the frequency domain. A two-dimensional test case is validated against time-marching fluid-structure coupled simulations for subsonic and transonic conditions. A span of mass ratios is investigated showing that the adapted p-k method is able to predict the transition between aeroelastically stable and unstable cascades depending on the mass ratio. Finally, the p-k method is applied to a low mass ratio fan showing that the flutter-free operating range is significantly reduced when aerodynamic coupling effects are taken into account.


Author(s):  
Ashwin Kannan ◽  
Krishna Kishor Dubasi ◽  
Adele Nasti ◽  
Akin Keskin ◽  
Joshua Clough

Abstract Current turbomachinery design and analysis is a time consuming process, involving multiple teams and multi-disciplinary physics to be considered during the design stages. The geometry definition is a key enabler requiring better, clean and flexible designs at desired level of fidelity for all analyses. In order to achieve this, a fully parametric approach has been developed using a feature library (user defined features – UDFs) in a CAD package together with multiple tools to prepare the geometry for analysis. The paper will describe the approach towards feature library creation for a whole aero engine application, the relevant steps to prepare the geometry for analysis, and the limitations. The feature library has been used to enable a new aero engine conceptual design from the whole engine aerodynamic gas path definition all the way to the structural design, providing the additional flexibility to perform trade-off studies through design of experiments (DOE). Results will be shown on variation of critical design parameters such as casing thicknesses, flange positions, and number of struts. The selected example will clearly demonstrate the time-saving and better-quality product achieved compared to the traditional process, and the ability of the engineer to explore the design space better with inter-linked analysis tools through a master geometry definition.


Author(s):  
Jinbo Chen ◽  
Abraham Engeda

Abstract Around the 1960s, the proposal of the supercritical dioxide (s-CCO2) power-cycle was first introduced; however, because of various obstacles, the development was slow at that time. With current worldwide emission and power problems, the s-CO2 power cycle has regained more attention because of its unique properties as a working fluid for power-cycle, and zero-emission potential. Each s-CO2 power cycle requires various components for compression, expansion, and heat exchange operation. Among various working fluid, s-CO2 has four significant advantages favorable for developers: 1. Relatively low and achievable critical conditions (∼7.3Mpa, ∼31°C). 2. The high density (∼400kg/m3) results in a very compact turbomachinery design. 3. The low dynamic-viscosity of s-CO2 can reduce the overall flow friction loss. 4. Low compressibility value which can reduce the overall system compression works. All these advantages make the s-CO2 the perfect working fluid for next-generation high-efficiency power-cycle design. This paper in two parts reviews the s-CO2 cycle technologies for power generation and critically assesses the recent challenges and development status. This paper, Part I, focuses on the general cycle concepts, thermodynamic properties, materials selection, and other components considerations.


Author(s):  
Bugra Ertas

Abstract The following paper presents a new type of gas lubricated thrust bearing that utilizes additive manufacturing or also known as direct metal laser melting (DMLM) to fabricate the bearing. The motivation for the new bearing concept is derived from the need for highly efficient supercritical carbon dioxide (sCO2) turbomachinery in the mega-watt power range. The paper provides a review of existing gas thrust bearing technology, outlines the need for the new DMLM concept, and discusses proof of concept testing results. The new concept combines hydrostatic pressurization with individual tilting pads that are flexibly mounted using hermetic squeeze film dampers (HSFD) in the bearing-pad support. This paper describes the thrust bearing concept and discusses the final design approach. Proof-of-concept testing in air for a 6.8” (173mm) outer diameter thrust gas bearing was performed; with thrust loading, up to 1,500 lbs (6.67kN) and a thrust runner speed of 10krpm (91 m/s tip speed). The experiments were performed with a bent shaft resulting in thrust runner axial vibration magnitudes of 2.9mils (74microns) p-p and dynamic thrust loads of 270 lbs (1.2kN) p-p. In addition, force deflection characteristics and stiffness coefficients of the bearing system are presented for an inlet hydrostatic pressure of 380psi (2.62MPa). Results at 10krpm show that the pad support architecture was able to sustain high levels of dynamic misalignment equaling 6 times the nominal film clearance while demonstrating a unit load carrying capacity of 55psi (0.34Mpa). Gas-film force deflection tests portrayed nonlinear behavior like a hardening spring, while the bearing pad support stiffness was measured to be linear and independent of gas film thickness.


Author(s):  
Matthias Schuff ◽  
Virginie Anne Chenaux

Abstract Current trends in turbomachinery design significantly reduce the mass ratio of structure to air, making them prone to flutter by aerodynamic coupling between mode shapes, also called coupled-mode flutter. The p-k method, which solves an aeroelastic eigenvalue problem for frequency and damping respectively excitation of the aerodynamically coupled system, was adapted for turbomachinery application using aerodynamic responses computed in the frequency domain. A two-dimensional test case is validated against time-marching fluid-structure coupled simulations for subsonic and transonic conditions. A span of mass ratios is investigated showing that the adapted p-k method is able to predict the transition between aeroelastically stable and unstable cascades depending on the mass ratio. Finally, the p-k method is applied to a low mass ratio fan showing that the flutter-free operating range is significantly reduced when aerodynamic coupling effects are taken into account.


Sign in / Sign up

Export Citation Format

Share Document