Resolving the Sequence-Dependent Stiffness of DNA Using Cyclization Experiments and a Computational Rod Model

Author(s):  
Sachin Goyal ◽  
Noel C. Perkins ◽  
Jens-Christian Meiners

Structural deformations of DNA play a central role in many biological processes including gene expression. The structural deformations are sensitive to the material properties of the molecule and these, in turn, vary along the molecule’s length according to its base-pair sequence. Example ‘sequence-dependent’ material properties include the stress-free curvature and the stiffness for bending and torsion. Separating and quantifying these sequence-dependent properties from experimental data remains a significant challenge as they often work in unison in nature. In this paper, we offer a method for resolving and quantifying the sequence-dependent stiffness of DNA from cyclization (loop closure) experiments using a computational rod model of the molecule.

Author(s):  
Sachin Goyal ◽  
Noel C. Perkins ◽  
Jens-Christian Meiners

Structural deformations of DNA play a central role in many biological processes, including gene expression. The structural deformations are sensitive to the material properties of the molecule, and these, in turn, vary along the molecule’s length according to its base-pair sequence. Examples of “sequence-dependent” material properties include the stress-free curvature and the stiffness for bending and torsion. Quantifying and separating these sequence-dependent properties from experimental data remains a significant challenge as they often work in unison in nature. In this paper, we offer a method for resolving and quantifying the sequence-dependent stiffness of DNA from cyclization (loop closure) experiments using a computational rod model of the molecule.


1990 ◽  
Vol 10 (8) ◽  
pp. 4080-4088
Author(s):  
F Vauti ◽  
P Morandini ◽  
J Blusch ◽  
A Sachse ◽  
W Nellen

We dissected the promoter of the developmentally induced and cyclic AMP-repressed discoidin I gamma gene and identified a sequence element essential for developmental induction. Transfer of the element to an inactive heterologous promoter demonstrated that this sequence is sufficient to confer expression in axenically growing cells and to induce gene activity in development after growth on bacteria. A 16-base-pair sequence within this element was shown to be sufficient for induction in the discoidin promoter context and was used to reactivate different truncated promoter constructs. This led to the localization of an element necessary for down regulation of gene expression by extracellular cyclic AMP.


1990 ◽  
Vol 10 (8) ◽  
pp. 4080-4088 ◽  
Author(s):  
F Vauti ◽  
P Morandini ◽  
J Blusch ◽  
A Sachse ◽  
W Nellen

We dissected the promoter of the developmentally induced and cyclic AMP-repressed discoidin I gamma gene and identified a sequence element essential for developmental induction. Transfer of the element to an inactive heterologous promoter demonstrated that this sequence is sufficient to confer expression in axenically growing cells and to induce gene activity in development after growth on bacteria. A 16-base-pair sequence within this element was shown to be sufficient for induction in the discoidin promoter context and was used to reactivate different truncated promoter constructs. This led to the localization of an element necessary for down regulation of gene expression by extracellular cyclic AMP.


2021 ◽  
Author(s):  
Dania Machlab ◽  
Lukas Burger ◽  
Charlotte Soneson ◽  
Filippo M. Rijli ◽  
Dirk Schübeler ◽  
...  

AbstractProteins binding to specific nucleotide sequences, such as transcription factors, play key roles in the regulation of gene expression. Their binding can be indirectly observed via associated changes in transcription, chromatin accessibility, DNA methylation and histone modifications. Identifying candidate factors that are responsible for these observed experimental changes is critical to understand the underlying biological processes. Here we present monaLisa, an R/Bioconductor package that implements approaches to identify relevant transcription factors from experimental data. The package can be easily integrated with other Bioconductor packages and enables seamless motif analyses without any software dependencies outside of R.AvailabilitymonaLisa is implemented in R and available on Bioconductor at https://bioconductor.org/packages/monaLisa with the development version hosted on GitHub at https://github.com/fmicompbio/[email protected]


2021 ◽  
Vol 30 (03) ◽  
pp. 201-210
Author(s):  
Uwe Kornak ◽  
Oliver Bischof ◽  
Eric Hesse ◽  
Franz Jakob ◽  
Regina Ebert ◽  
...  

AbstractGenetics studies the inheritance of genetic information encoded by the base pair sequence and its variants. Sequence variants can have severe consequences as seen in genetically inherited diseases (e. g. osteogenesis Imperfecta, hypophosphatasia). On the other hand, epigenetics deals with inherited and dynamically reversible modifications of chromatin without changing the base pair sequence, resulting in a change in phenotype without a change in genotype. These modifications primarily exert their effects by influencing gene expression. Initially, the definition of epigenetics exclusively comprised inherited changes that persist across several generations without changes in the DNA sequence. This definition has been extended to include also dynamic and partially reversible changes that occur more short-term. These gene modulatory effects introduce new levels of complexity and are crucial determinants of cell fate and organismal development. With its length of approximately two meters, human DNA has to be compacted to fit into the nuclei and fulfill its functions. DNA is wrapped around histone octamers into so-called nucleosomes. DNA, histones, and other DNA-associated proteins together form what is called chromatin. DNA packaging is achieved by variable degrees of chromatin condensation depending on cell type and context. Epigenetic transcriptional regulation modifies the affinity and accessibility of cis-regulatory elements (CREs) for transcription factors and the basic transcriptional machinery and governs interaction between CREs. CREs include promoters, enhancers, silencers, and insulators and are potent modulators of gene expression impacting core cell biological processes such as proliferation and differentiation. Chromatin looping and remodeling by differential covalent modifications of DNA (e. g., methylation or hydroxylation) and histone tails (e. g., acetylation or methylation) elicit fundamental changes in CRE accessibility, thus impacting gene expression. Chromatin looping depends on a specialized machinery including cohesins. Chromatin modifications are mediated by specific enzymes like DNA methylases (DNMTs), histone-modifying enzymes, like histone methyl- and acetyltransferases (KMTs, HATs/KATs), and histone demethylases and deacetylases (KDMs, HDACs). It becomes increasingly evident that epigenetic (dys)regulation plays a decisive role in physiology and pathophysiology, impacting many age-related diseases like cancer and degenerative pathologies (e. g., osteoporosis, Alzheimer’s, or Parkinson’s) in a significant fashion. Recently, small-molecule inhibitors of chromatin-modifying enzymes (e. g., vorinostat) have been identified and successfully introduced in therapy. Significant progress in high-throughput sequencing technologies and big data analysis has broadened our understanding of noncoding (nc) RNAs and DNA sequence regions in (post-)transcriptional regulation and disease development. Among ncRNAs that play vital roles in gene expression are micro- (miRs) and long noncoding RNAs (lncRNAs; e. g., XIST or HOTAIR). By interacting with the coding genome, these RNAs modulate important genetic programs. Interfering RNAs can, for example, enhance the post-transcriptional degradation of transcripts, altering their translation, or assist in the recruitment of chromatin-modifying enzymes to regulate transcription. They can also be packaged into extracellular vesicles as cargo and thus deliver critical information to the microenvironment or even systemically to distant tissues. Therefore, ncRNAs represent a novel playground for therapeutical investigations and supplement epigenetic mechanisms of gene regulation while being subject to epigenetic regulation themselves. Last but not least, dysregulated ncRNAs can also propagate disease. Until recently, the detection of epigenetic phenomena necessitated invasive diagnostic interventions. However, with the arrival of so-called “liquid biopsies” an analysis of circulating cell-free DNA fragments (cfDNA) and RNAs as well as vesicle-packed RNAs through minimal invasively drawn blood samples can be obtained. Such “fragmentomics” and RNAomics approaches on peripheral blood will ultimately serve as diagnostic tools for personalized clinical interventions.


2019 ◽  
Vol 23 (15) ◽  
pp. 1663-1670 ◽  
Author(s):  
Chunyan Ao ◽  
Shunshan Jin ◽  
Yuan Lin ◽  
Quan Zou

Protein methylation is an important and reversible post-translational modification that regulates many biological processes in cells. It occurs mainly on lysine and arginine residues and involves many important biological processes, including transcriptional activity, signal transduction, and the regulation of gene expression. Protein methylation and its regulatory enzymes are related to a variety of human diseases, so improved identification of methylation sites is useful for designing drugs for a variety of related diseases. In this review, we systematically summarize and analyze the tools used for the prediction of protein methylation sites on arginine and lysine residues over the last decade.


Author(s):  
Rianne R. Campbell ◽  
Siwei Chen ◽  
Joy H. Beardwood ◽  
Alberto J. López ◽  
Lilyana V. Pham ◽  
...  

AbstractDuring the initial stages of drug use, cocaine-induced neuroadaptations within the ventral tegmental area (VTA) are critical for drug-associated cue learning and drug reinforcement processes. These neuroadaptations occur, in part, from alterations to the transcriptome. Although cocaine-induced transcriptional mechanisms within the VTA have been examined, various regimens and paradigms have been employed to examine candidate target genes. In order to identify key genes and biological processes regulating cocaine-induced processes, we employed genome-wide RNA-sequencing to analyze transcriptional profiles within the VTA from male mice that underwent one of four commonly used paradigms: acute home cage injections of cocaine, chronic home cage injections of cocaine, cocaine-conditioning, or intravenous-self administration of cocaine. We found that cocaine alters distinct sets of VTA genes within each exposure paradigm. Using behavioral measures from cocaine self-administering mice, we also found several genes whose expression patterns corelate with cocaine intake. In addition to overall gene expression levels, we identified several predicted upstream regulators of cocaine-induced transcription shared across all paradigms. Although distinct gene sets were altered across cocaine exposure paradigms, we found, from Gene Ontology (GO) term analysis, that biological processes important for energy regulation and synaptic plasticity were affected across all cocaine paradigms. Coexpression analysis also identified gene networks that are altered by cocaine. These data indicate that cocaine alters networks enriched with glial cell markers of the VTA that are involved in gene regulation and synaptic processes. Our analyses demonstrate that transcriptional changes within the VTA depend on the route, dose and context of cocaine exposure, and highlight several biological processes affected by cocaine. Overall, these findings provide a unique resource of gene expression data for future studies examining novel cocaine gene targets that regulate drug-associated behaviors.


2021 ◽  
Vol 22 (6) ◽  
pp. 3234
Author(s):  
Juhyun Lee ◽  
Si-Eun Sung ◽  
Janghyun Lee ◽  
Jin Young Kang ◽  
Joon-Hwa Lee ◽  
...  

Riboswitches are segments of noncoding RNA that bind with metabolites, resulting in a change in gene expression. To understand the molecular mechanism of gene regulation in a fluoride riboswitch, a base-pair opening dynamics study was performed with and without ligands using the Bacillus cereus fluoride riboswitch. We demonstrate that the structural stability of the fluoride riboswitch is caused by two steps depending on ligands. Upon binding of a magnesium ion, significant changes in a conformation of the riboswitch occur, resulting in the greatest increase in their stability and changes in dynamics by a fluoride ion. Examining hydrogen exchange dynamics through NMR spectroscopy, we reveal that the stabilization of the U45·A37 base-pair due to the binding of the fluoride ion, by changing the dynamics while maintaining the structure, results in transcription regulation. Our results demonstrate that the opening dynamics and stabilities of a fluoride riboswitch in different ion states are essential for the genetic switching mechanism.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathan J. VanDusen ◽  
Julianna Y. Lee ◽  
Weiliang Gu ◽  
Catalina E. Butler ◽  
Isha Sethi ◽  
...  

AbstractThe forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.


Sign in / Sign up

Export Citation Format

Share Document