Path Planning for Automated Robot Painting

Author(s):  
Finlay N. McPherson ◽  
Jonathan R. Corney ◽  
Raymond C. W. Sung

This paper describes the analysis work underlying the path-planning algorithm for a robotic painting system. The system requires no bespoke production tooling and fills an automation gap in rapid prototyping and manufacturing technology that is currently occupied by hand painting. The system creates images by exposing individual pixels of a photographic coating with a robot-mounted laser. The painting process requires no physical contact so potentially images could be developed on any shape regardless of its complexity: As objects can only be “painted” when their surface can be “hit” (i.e. exposed) by the light beam the system requires six degrees of freedom to ensure all overhanging or reentrant areas can be exposed. The accuracy of serial robots degrades with the length of the kinematic chain (in other words six axis robots cannot position themselves with the same accuracy as four axis ones). Consequently to ensure high precision in the location and orientation of the light source, the object being exposed is mounted on a rotary tilt table within the workspace of a four-axis robot. This gives a six-degree of freedom positioning system composed of two separate kinematic chains. Although the resulting system is accurate the problems of constructing a coordinated path that allows the light beam to efficiently sweep (i.e. cover) the surface regardless of its geometry are challenging. This paper describes the difficulties and, after reviewing existing path planning algorithms, a new algorithm is introduced firstly by describing the nature of the system’s configuration space and then further developing this concept as an alternative to a previously described planning algorithm. Having outlined the approach the paper presents a kinematic model for the system and compares the configuration space approach to a purely Cartesian planning approach.

Author(s):  
S. Shubhashis ◽  
M. Choubey ◽  
A.C. Rao

There is no dearth of methods to test isomorphism amongst kinematic chains. Search for a computationally easier, logically simple and unique method is still on. Present work is in quest of a reliable test to detect isomorphism among kinematic chains. Work presented here is more versatile as it incorporates more features of the kinematic chain which were not included earlier such as number and type of links, their relative dispositions in the kinematic chain, nature of adjacent links etc. The method proposed is based on the concept of pseudo-probability (pseudo means it appears to be, but not exactly. The approach does not follow in-toto the principles of probability and considerable liberty has been taken in interpreting the word probability hence the word pseudo is used along with the probability schemes). Using the resemblance of different coloured balls in an urn for the number and type of links in a kinematic chain, a matrix (named P-Matrix) representing the kinematic chain in totality is generated. For the sake of comparison a numerical scheme named, pseudo probability scheme, P-Scheme, is developed from the above P-Matrix and is used for testing isomorphism. In fact the method is more powerful in the sense that each row of the proposed P-Matrix is capable of representing the respective kinematic chain distinctly and can be used to compare the kinematic chains with same link assortments, uniquely. The proposed method, besides possessing the potential of testing the isomorphism among simple-joint, single degree of freedom kinematic chains is also capable of multi degrees of freedom and multiple-joint kinematic chains.


Author(s):  
Guofeng Zhou ◽  
Junwoo Kim ◽  
Yong Je Choi

The Jacobian approach to the kinestatic analysis of a planar suspension mechanism has been previously presented. In this paper, the theory is extended to three-dimensional kinestatic analysis by developing a full kinematic model and viewing it as a spatial parallel mechanism. The full kinematic model consists of two pairs of the front (double wishbone) and rear (multi-link) suspension mechanisms together with a newly developed ground-wheel contact model. The motion of each wheel of four suspension mechanisms is represented by the corresponding instantaneous screw at any instant. A vehicle is considered to be a 6-degrees-of-freedom spatial parallel mechanism whose vehicle body is supported by four serial kinematic chains. Each kinematic chain consists of a virtual instantaneous screw joint and a kinematic pair representing ground-wheel contact model. The kinestatic equation of the 6-degrees-of-freedom spatial parallel mechanism is derived in terms of the Jacobian. As an important application, a cornering motion of a vehicle is analysed under the assumption of steady-state cornering. A numerical example is presented to illustrate how to determine the optimal locations of strut springs for the least roll angle in cornering motion using the proposed method.


2019 ◽  
Vol 20 (7) ◽  
pp. 428-436
Author(s):  
A. K. Tolstosheev ◽  
V. A. Tatarintsev

The work is devoted to improving the reliability and manufacturability of mechatronic machine designs with parallel kinematics by replacing statically indeterminable manipulators with statically determinable mechanisms. A technique is proposed in which the design of statically determinable manipulators of technological mechatronic machines with parallel kinematics is performed by modifying the structure of prototypes and includes three steps: identifying and analyzing redundant links, eliminating redundant links, checking the correctness of eliminating redundant links. To determine the number of degrees of freedom of the mechanism, identify redundant links, and verify the solution, the authors use the proposed methodology for structural analysis of parallel structure mechanisms. In structural analysis, a manipulator is represented by a hierarchical structure and is considered as a parallel connection of elementary mechanisms with an open kinematic chain; as a kinematic chain consisting of leading and driven parts; as a set of links and kinematic pairs; as a kinematic connection of the output link and the rack. The article implements the following techniques for eliminating redundant links: mobility increase in kinematic pairs; introduction of unloading links and passive kinematic pairs to the kinematic chain; exclusion of extra links and pairs from the kinematic chain; increase in mobility in some kinematic pairs simultaneously with the exclusion of other kinematic pairs that have become superfluous. The authors developed several variants of structural schemes of self-aligning manipulators based on the Orthoglide mechanism, which retain the basic functional proper ties of the prototype. To increase the number of self-aligning mechanism diagrams, the redistribution of mobilities and links within the connecting kinematic chain and between connecting kinematic chains is used. The proposed methodics allow to determine the number of degrees of freedom of the mechanism, the number and type of redundant links, eliminate redundant links and, on an alternative basis, build structural diagrams of statically determinable mechanisms of technological mechatronic machines with parallel kinematics.


1992 ◽  
Vol 4 (3) ◽  
pp. 210-217
Author(s):  
Toshio Tsuji ◽  
◽  
Koji Ito ◽  

This paper proposes a collision-free path planning algorithm in the task space based on virtual arms. The virtual arm has the same kinematic structure as the actual arm except that its end-point is located at the joint or link of the actual arm. Therefore, the configuration of the actual arm can be represented as a set of end-points of the virtual arms, and the path planning for multi-joint manipulators can be performed only in the task space. Our method adopts a hierarchical strategy which consists of the global level, the intermediate level, and the local level. The global level plans the collision-free endpoint trajectory of the actual arm based on the global representation of the task space. The intermediate level generates the subgoals for the actual and virtual endpoints based on the current positions and the actual endpoint trajectory specified by the global level. The local level moves each end-point to the corresponding subgoal, avoiding the close obstacles based on the local informations of the task space. The effectiveness of the method is verified by computer simulations using a planar manipulator with redundant joint degrees of freedom.


Author(s):  
Wei Yao ◽  
Jian S. Dai

This paper investigates the algorithm of origami carton folding with a multi-fingered robotic carton-packaging system. The equivalent mechanism structure of origami cartons is developed by modeling carton boards as links and creases as revolution joints. The trajectories of carton folding are analyzed by the mechanism model. Particularly the vertex of the carton is identified as a spherical linkage. A path planning algorithm is then generated based on the trajectory that is passed on to the tip of a five-bar robotic finger and the finger configuration space is identified. A test rig with two robotic fingers was developed to demonstrate the principle.


Robotica ◽  
2010 ◽  
Vol 29 (2) ◽  
pp. 295-315 ◽  
Author(s):  
Debanik Roy

SUMMARYCollision-free path planning for static robots is a demanding manifold of contemporary robotics research, vastly due to the growing industrial applications. In this paper, a novel ‘visibility map’-based heuristic algorithm is used to generate near-optimal safe path for a three-dimensional congested robot workspace. The final path is obtainable in terms of joint configurations, by considering the Configuration Space of the task space. The developed algorithm has been verified initially by considering representative 2D workspaces, cluttered with different obstacles with regular geometries and then after with the spatial endeavour. A case study reveals the effectiveness of the developed modules of the configuration space mapping, pertaining to a five degrees-of-freedom low payload articulated robot.


1999 ◽  
Vol 121 (1) ◽  
pp. 32-38 ◽  
Author(s):  
F. C. Park ◽  
J. W. Kim

This paper presents a coordinate-invariant differential geometric analysis of kinematic singularities for closed kinematic chains containing both active and passive joints. Using the geometric framework developed in Park and Kim (1996) for closed chain manipulability analysis, we classify closed chain singularities into three basic types: (i) those corresponding to singular points of the joint configuration space (configuration space singularities), (ii) those induced by the choice of actuated joints (actuator singularities), and (iii) those configurations in which the end-effector loses one or more degrees of freedom of available motion (end-effector singularities). The proposed geometric classification provides a high-level taxonomy for mechanism singularities that is independent of the choice of local coordinates used to describe the kinematics, and includes mechanisms that have more actuators than kinematic degrees of freedom.


2020 ◽  
Vol 1 ◽  
Author(s):  
Matteo Sposito ◽  
Christian Di Natali ◽  
Stefano Toxiri ◽  
Darwin G. Caldwell ◽  
Elena De Momi ◽  
...  

Abstract Exoskeletons are wearable devices intended to physically assist one or multiple human joints in executing certain activities. From a mechanical point of view, they are kinematic structures arranged in parallel to the biological joints. In order to allow the users to move while assisted, it is crucial to avoid mobility restrictions introduced by the exoskeleton’s kinematics. Passive degrees of freedom and other self-alignment mechanisms are a common option to avoid any restrictions. However, the literature lacks a systematic method to account for large inter- and intra-subject variability in designing and assessing kinematic chains. To this end, we introduce a model-based method to assess the kinematics of exoskeletons by representing restrictions in mobility as disturbances and undesired forces at the anchor points. The method makes use of robotic kinematic tools and generates useful insights to support the design process. Though an application on a back-support exoskeleton designed for lifting tasks is illustrated, the method can describe any type of rigid exoskeleton. A qualitative pilot trial is conducted to assess the kinematic model that proved to predict kinematic configurations associated to rising undesired forces recorded at the anchor points, that give rise to mobility restrictions and discomfort on the users.


1992 ◽  
Vol 4 (5) ◽  
pp. 378-385
Author(s):  
Hiroshi Noborio ◽  
◽  
Motohiko Watanabe ◽  
Takeshi Fujii

In this paper, we propose a feasible motion planning algorithm for a robotic manipulator and its obstacles. The algorithm quickly selects a feasible sequence of collision-free motions while adaptively expanding a graph in the implicit configuration joint-space. In the configuration graph, each arc represents an angle difference of the manipulator joint; therefore, an arc sequence represents a continuous sequence of robot motions. Thus, the algorithm can execute a continuous sequence of collision-free motions. Furthermore, the algorithm expands the configuration graph only in space which is to be cluttered in the implicit configuration joint-space and which is needed to select a collision-free sequence between the initial and target positions/orientations. The algorithm maintains the configuration graph in a small size and quickly selects a collision-free sequence from the configuration graph, whose shape is to be simple enough to move the manipulator in practical applications.


2018 ◽  
Vol 16 (6) ◽  
pp. 3026-3035 ◽  
Author(s):  
Ehsan Taheri ◽  
Mohammad Hossein Ferdowsi ◽  
Mohammad Danesh

Sign in / Sign up

Export Citation Format

Share Document