Sensitivity Analysis of Smoothed Particle Hydrodynamics in PAM-CRASH for Modeling of Soft Soils

Author(s):  
Ranvir Dhillon ◽  
Moustafa El-Gindy ◽  
Rustam Ali ◽  
David Philipps ◽  
Fredrik Öijer ◽  
...  

The rapid progression of computational power and development of non-mesh particle modeling techniques provides solutions to problems which are not accurately modeled using traditional finite element analysis techniques. The field of soft soil modeling has been pressing on in recent years and the smoothed particle hydrodynamics (SPH) modeling method in PAM-CRASH provides opportunity for further advancement in accuracy. This research focuses on the development of soft soil models using SPH with verification using pressure-sinkage and shear strength criterion. Soil model parameters such as geometry and contact model are varied to determine the effect of the parameters on the behaviour of the soft soil and relationships are developed. The developed virtual soil models are compared against existing soils to determine which soils are accurately modeled and further refinements are made to validate the models with existing empirical data.

2021 ◽  
Vol 18 (185) ◽  
Author(s):  
S. Mostafa Mousavi J. S. ◽  
Danial Faghihi ◽  
Kelsey Sommer ◽  
Mohammad M. S. Bhurwani ◽  
Tatsat R. Patel ◽  
...  

Stent retriever thrombectomy is a pre-eminent treatment modality for large vessel ischaemic stroke. Simulation of thrombectomy could help understand stent and clot mechanics in failed cases and provide a digital testbed for the development of new, safer devices. Here, we present a novel, in silico thrombectomy method using a hybrid finite-element analysis (FEA) and smoothed particle hydrodynamics (SPH). Inspired by its biological structure and components, the blood clot was modelled with the hybrid FEA–SPH method. The Solitaire self-expanding stent was parametrically reconstructed from micro-CT imaging and was modelled as three-dimensional finite beam elements. Our simulation encompassed all steps of mechanical thrombectomy, including stent packaging, delivery and self-expansion into the clot, and clot extraction. To test the feasibility of our method, we simulated clot extraction in simple straight vessels. This was compared against in vitro thrombectomies using the same stent, vessel geometry, and clot size and composition. Comparisons with benchtop tests indicated that our model was able to accurately simulate clot deflection and penetration of stent wires into the clot, the relative movement of the clot and stent during extraction, and clot fragmentation/embolus formation. In this study, we demonstrated that coupling FEA and SPH techniques could realistically model stent retriever thrombectomy.


Author(s):  
Zeinab El-Sayegh ◽  
Moustafa El-Gindy ◽  
Inge Johansson ◽  
Fredrik Öijer

The performance of a vehicle highly depends on the tire-terrain interaction characteristics. The terrain on which a vehicle operates can vary dramatically. This paper focuses on the evaluation of an in-plane truck tire performance running over the flooded surface. The truck tire is modeled using Finite Element Analysis (FEA) technique and validated against measured data. The water is modeled using Smoothed Particle Hydrodynamics (SPH), which includes water material properties. The tire-terrain interaction algorithm is defined using node-symmetric node-to-segment contact with edge treatment. The performance characteristics of the interaction include the rolling resistance coefficient, vertical, longitudinal tread and longitudinal tire stiffnesses. The simulations are repeated for several operating conditions such as inflation pressure, applied vertical load, and water depth. The flooded surface results are compared with previously published data. This work will be extended to include the prediction of the full in-plane and out-of-plane rigid ring tire model parameters while the tire is operating under various conditions.


2007 ◽  
Vol 04 (04) ◽  
pp. 671-691 ◽  
Author(s):  
C. E. ZHOU ◽  
G. R. LIU ◽  
K. Y. LOU

This paper presents three-dimensional computational simulations of the hypervelocity impact (HVI) using standard smoothed particle hydrodynamics (SPH). The classic Taylor-Bar-Impact test is revisited with the focus on the variation of results corresponding to the different model parameters in the SPH implementation. The second example involves both normal and oblique HVIs of a sphere on the thin plate, producing large deformation of structures. Based on original experimental results and some numerical results reported previously, some comparisons are also made, in the hope of providing informative data on appropriate SPH implementation options for the software being developed. The results obtained show that the current SPH procedure is well suited for the HVI problems.


Author(s):  
Zeinab El-Sayegh ◽  
Moustafa El-Gindy

This paper focuses on the modelling and prediction of truck tyre–snow interaction to compute tyre motion resistance coefficient. The off-road truck tyre size 315/80R22.5 is modelled using finite element analysis and validated in static and dynamic response against published measured data. The snow is modelled using smoothed particle hydrodynamics technique and hydrodynamic-elastic-plastic material and then calibrated against physical measurements provided by published terramechanics data. The contact algorithm implemented is the node-symmetric node-to-segment contact with edge treatment. The rolling resistance coefficient is also known as the motion resistance coefficient of the truck tyre–snow interaction and is computed for several operating conditions including the vertical load, inflation pressure, tyre longitudinal speed, and snow depth. The influence of the above-mentioned operating conditions on the truck tyre motion resistance coefficient is examined and discussed.


Author(s):  
David Kauzlarić ◽  
Lars Pastewka ◽  
Hagen Meyer ◽  
Richard Heldele ◽  
Michael Schulz ◽  
...  

We present the application of the smoothed particle hydrodynamics (SPH) discretization scheme to Phillips’ model for shear-induced particle migration in concentrated suspensions. This model provides an evolution equation for the scalar mean volume fraction of idealized spherical solid particles of equal diameter which is discretized by the SPH formalism. In order to obtain a discrete evolution equation with exact conservation properties we treat in fact the occupied volume of the solid particles as the degree of freedom for the fluid particles. We present simulation results in two- and three-dimensional channel flow. The two-dimensional results serve as a verification by a comparison to analytic solutions. The three-dimensional results are used for a comparison with experimental measurements obtained from computer tomography of injection moulded ceramic microparts. We observe the best agreement of measurements with snapshots of the transient simulation for a ratio D c / D η =0.1 of the two model parameters.


2008 ◽  
Vol 96 (6) ◽  
pp. 263-268 ◽  
Author(s):  
E. Mounif ◽  
V. Bellenger ◽  
A. Ammar ◽  
R. Ata ◽  
P. Mazabraud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document