resistance coefficient
Recently Published Documents


TOTAL DOCUMENTS

511
(FIVE YEARS 201)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Vol 355 ◽  
pp. 01002
Author(s):  
Jiabao Chen ◽  
Bangjun Lv ◽  
Likun Peng ◽  
Bin Huang

The submarine is usually affected by free surface and the navigation resistance increases when sailing near the surface. In order to study the specific resistance characteristics of submarine sailing near the surface, the SUBOFF with appendages was taken as the research object, and the calculation model was built based on Star CCM+ fluid simulation software, and the resistance coefficients under different submarine depths and speeds were calculated. Through comparative analysis, the influence of the depth and speed of the submarine on the resistance components was obtained, and the cause of the formation was analyzed. The results show that the influence of the depth of submarine on friction resistance coefficient is small in general. With the increase of the depth of the submarine, the pressure resistance coefficient decreases, and the wave amplitude decreases. The shear wave of Kelvin wave system is more obvious and the effect of scattering is weakened, which is of great significance for the study of submarine concealment. With the increase of speed, friction resistance coefficient decreases, the overall change trend of pressure resistance coefficient is first increased and then decreases. The interference effect between free surface and hull increases first and then decreases at each depth. The wave shape changes and resistance results mutually confirm. The free surface mainly generates waves by interacting with the hull, which affects the resistance characteristics of the submarine. The interference effect is greatly affected by the depth and speed of the submarine.


Author(s):  
M. L. Larsen ◽  
J. Cesbron ◽  
F. Anfosso-Lédée ◽  
C. Ropert ◽  
J. C. Dyre ◽  
...  

In this paper, a versatile drum setup for measuring rolling resistance of small wheels is presented. The purpose is to provide a flexible setup for testing of models for rolling resistance under controlled circumstances. To demonstrate this, measurements of rolling resistance with a series of sandpapers of different grit sizes representing surface textures were carried out. The measurements show a clear increase in the rolling-resistance coefficient with increasing surface roughness, rolling speed and load. Numerical calculations in the time domain for a visco-elastic contact model run on equivalent surfaces agree with the trends found experimentally. We conclude that this approach to simplifying the experiment in order to obtain a high degree of control, accuracy and repeatability is useful for validating and testing models for calculating the rolling resistance for a given surface texture.


Author(s):  
V. I. Tarasevych ◽  
Yu. G. Gasan

The paper considers the issues of obtaining a composite material based on gypsumbinder and sulfur with high performance. Technological factorsinfluencing the hardening coefficient, water resistance and chemical resistance of gypsum products impregnated in sulfur melt have beenstudied. The regularities of impregnation of gypsum matrix with sulfur melt are established takinginto account the capillary-porous structure of gypsum stone and physical and technical properties ofsulfur. The regularities of impregnation of gypsum matrix with sulfur melt are established taking intoaccount the capillary-porous structure of gypsum stone and physical and technical properties ofsulfur. Research and consideration of mass transfer indicators during impregnation of gypsumconcrete products with sulfur melt allowed to optimize the technology. Thus, by the method ofcapillary impregnation on the original laboratory installation, the mass transfer coefficients forsulfur were measured. As a result of these studies, the dependences of the mass transfer coefficienton the temperature of the sulfur melt, the rate of heating of the melt, the concentration of the fillerand the water-solid ratio were obtained. Products made of composite material based on gypsum andsulfur have the following construction and technical characteristics: compressive strength, not lessthan 30.0 MPa; flexural strength, not less than 6.0 MPa; water resistance coefficient, not less than0.7; coefficient of corrosion resistance, not less than 0.7; wear resistance, no more than 0.3 g / cm2 .Analysis of the main construction and technical characteristics of the composite material based ongypsum and sulfur shows that the resulting composite has high strength, water and corrosionresistance to various aggressive environments. Facing tiles made of this material have highperformance characteristics and should be used in the lining of buildings of railway infrastructure,drainage systems, fertilizer storage, floors and walls of the chemical and food industries.


2021 ◽  
Vol 7 (4) ◽  
pp. 311-318
Author(s):  
Artavazd M. Sujyan ◽  
Viktor I. Deev ◽  
Vladimir S. Kharitonov

The paper presents a review of modern studies on the potential types of coolant flow instabilities in the supercritical water reactor core. These instabilities have a negative impact on the operational safety of nuclear power plants. Despite the impressive number of computational works devoted to this topic, there still remain unresolved problems. The main disadvantages of the models are associated with the use of one simulated channel instead of a system of two or more parallel channels, the lack consideration for neutronic feedbacks, and the problem of choosing the design ratios for the heat transfer coefficient and hydraulic resistance coefficient under conditions of supercritical water flow. For this reason, it was decided to conduct an analysis that will make it possible to highlight the indicated problems and, on their basis, to formulate general requirements for a model of a nuclear reactor with a light-water supercritical pressure coolant. Consideration is also given to the features of the coolant flow stability in the supercritical water reactor core. In conclusion, the authors note the importance of further computational work using complex models of neutronic thermal-hydraulic stability built on the basis of modern achievements in the field of neutron physics and thermal physics.


Author(s):  
Andriy Kravchuk ◽  
Oleksandr Kravchuk

A method of calculating the error that occurs when determining the flow rate in the final section of the pressure perforated drainage pipeline when it passes transit flow rate, based on the analysis of differential equations describing the fluid motion with variable flow rate in such pipelines is proposed in the paper. The analysis is presented in dimensionless form. The impact of transit flow on the main flow is estimated using the values ​​of the drainage pipeline resistance coefficient ζl and the generalized parameter of the perforated drain A, which takes into account its constructive and filtration characteristics. The obtained calculation formulas are quite simple and easy to use. The proposed method allows to perform calculations of drainage pipelines that operate in the presence of transit flow rate, according to the method of these pipes calculation that dispose drain water without passing transit. Herewith, the possible error, which includes in the calculation results, determines. To illustrate the obtained dependences, the corresponding graphs are given in the paper. The results of the analysis allow to determine the limits within which a simplified method of calculating these pipes can be used and the error, that occurs, can be estimated


2021 ◽  

Abstract The article is devoted to decision of actual task of air distribution efficiency increase due to swirled air jets application. The aim of the paper is investigation of swirled air jets, analytical dependencies obtaining for determination of the air velocity attenuation coefficient, aerodynamic local resistance coefficient and noise level from the twisting plates inclination angle; optimization of the twisting plates inclination angle of the air distributor. It has been established that increase of the angle results in the air velocity attenuation coefficient increase and results in decrease of the noise level and resistance coefficient of air distributor. The optimum angle of the plates is determined considering aerodynamic, noise and energy aspects and equals 36°.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 373
Author(s):  
Hao Dai ◽  
Chengxiang Zhu ◽  
Ning Zhao ◽  
Chunling Zhu ◽  
Yufei Cai

An unsteady tightly-coupled icing model is established in this paper to solve the numerical simulation problem of unsteady aircraft icing. The multi-media fluid of air and droplets is regarded as a single medium fluid with variable material properties. Taking the droplet concentration as the phase parameter and the droplet resistance coefficient as the interphase force, the mass concentration distribution of the droplet is obtained by solving the Cahn–Hilliard equation. Fick’s law is introduced to improve the Cahn–Hilliard equation to predict the droplet shadow zone. On this basis, the procedure of the unsteady numerical simulation method for aircraft icing is established, including grid generation, the dual-time-step method to realize the unsteady calculation of the air and droplet tightly-coupled mixed flow field, and the improved shallow water icing model. Finally, through the comparative analysis of numerical examples, the effectiveness of the new model in predicting the droplet impact characteristics and the droplet shadow zone are verified. Compared with other icing models, the ice shapes predicted by the unsteady tightly-coupled model were found to be the most consistent with the experiments. In the icing comparison conditions in this manuscript, the prediction accuracy of the ice thickness at the stagnation point of the leading edge was up to 35% higher than that of LEWICE.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 99-105
Author(s):  
A. S. Strogova

The regularities of changes in the concentration of an electrically active dopant in a nanostructured silicon film by changing the electrical resistivity depending on the doping conditions were investigated. The dependences of the changes in the obtained structures doped with rare-earth elements, such as La, Eu, Sm, Dy, Gd (lanthanides), on nanostructured silicon films are determined. The regularities of the obtained films changes and the temperature coefficient of resistance (TCR) change depending on the formation conditions are established. The regularities of the TCR are shown depending on the selected conditions for doping or non-doping of nanostructured silicon films with various impurities. It is shown that the main conditions under which the effect and change in the temperature coefficient of resistors resistance on thin films using rare-earth elements, such as oxygen, boron and phosphorus in the bulk of the film, is considered to be the temperature effect after deposition.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abid A. Memon ◽  
M. Asif Memon ◽  
Aisha M. Alqahtani ◽  
Kaleemullah Bhatti ◽  
Kamsing Nonlaopon ◽  
...  

Nonisothermal flow through the rectangular channel on a circular surface under the influence of a screen embedded at the middle of a channel at angles θ is considered. Simulations are carried out via COMSOL Multiphysics 5.4 which implements the finite element method with an emerging technique of the least square procedure of Galerkin’s method. Air as working fluid depends upon the Reynolds number with initial temperature allowed to enter from the inlet of the channel. The nonisothermal flow has been checked with the help of parameters such as Reynolds number, angle of the screen, and variations in resistance coefficient. The consequence and the pattern of the velocity field, pressure, temperature, heat transfer coefficient, and local Nusselt number are described on the front surface of the circular obstacle. The rise in the temperature and the flow rate on the surface of the obstacle has been determined against increasing Reynolds number. Results show that the velocity magnitudes are decreasing down the surface and the pressure is increasing down the surface of the obstacle. The pressure on the surface of the circular obstacle was found to be the function of the y-axis and does not show any impact due to the change of the resistance coefficient. Also, it was indicated that the temperature on the front circular surface does not depend upon the orientation of the screen and resistance factor. The heat transfer coefficient is decreasing which indicates that the conduction process is dominating over the convection process.


Sign in / Sign up

Export Citation Format

Share Document