Modified Jacobian-Torsor Based Error Modeling and Quantitative Sensitivity Analysis for Single Axis Assembly of Machine Tool

Author(s):  
Zhengchun Du ◽  
Jian Wu ◽  
Jianguo Yang

The influence of component errors on the final error is a key aspect of error modeling of CNC machine tool. Nevertheless, the mechanism by which the errors in mechanical parts accumulate to result in the component errors and then impact the final error of CNC machine, has not been identified; the identification of this mechanism is highly relevant to precision design of CNC machine. In this study, error modeling based on the Jacobian-torsor theory is founded to determine the mechanism by which fundamental errors in mechanical parts influence the comprehensive error of single-axis assembly. Firstly, the constraints of small displacement torsors (SDTs) for typical features and the statistical solution are proposed to perfect the modified Jacobian-torsor model theoretically. Next, the modified Jacobian-torsor model is applied to the error modeling of a single-axis assembly in a three-axis machine center. Furthermore, the comprehensive errors of the single-axis assembly are evaluated by Monte Carlo simulation based on the synthesized error model. The accuracy and efficiency of the modified Jacobian-torsor model are verified through a comparison between the simulation results and the measured data from a batch of similar vertical machine centers. Based on the modified Jacobian-torsor model, the application of quantitative sensitivity analysis of single-axis assembly is investigated, along with an analysis of the analysis of key error sources to the synthetical error ranges of the single-axis assembly. This model is providing a comprehensive method for the better understanding of the key error source of the machine tool and has the potential to enable error allocation and precision improvement of the assembly and the whole machine tool in future.

Author(s):  
Du Zhengchun ◽  
Wu Jian ◽  
Yang Jianguo

The influence of component errors on the final error is a key point of error modeling of computer numerical control (CNC) machine tool. Nevertheless, the mechanism by which the errors in mechanical parts accumulate to result in the component errors and then impact the final error of CNC machine tool has not been identified; the identification of this mechanism is highly relevant to precision design of CNC machine. In this study, the error modeling based on the Jacobian-torsor theory is applied to determine how the fundamental errors in mechanical parts influence and accumulate to the comprehensive error of single-axis assembly. First, a brief introduction of the Jacobian-torsor theory is provided. Next, the Jacobian-torsor model is applied to the error modeling of a single-axis assembly in a three-axis machine center. Furthermore, the comprehensive errors of the single-axis assembly are evaluated by Monte Carlo simulation based on the synthesized error model. The accuracy and efficiency of the Jacobian-torsor model are verified through a comparison between the simulation results and the measured data from a batch of similar vertical machine centers. Based on the Jacobian-torsor model, the application of quantitative sensitivity analysis of single-axis assembly is investigated, along with the analysis of key error sources to the synthetical error ranges of the single-axis assembly. This model provides a comprehensive method to identify the key error source of the single-axis assembly and has the potential to enhance the tolerance/error allocation of the single axis and the whole machine tool.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Wenjie Tian ◽  
Weiguo Gao ◽  
Wenfen Chang ◽  
Yingxin Nie

Geometric error modeling and its sensitivity analysis are carried out in this paper, which is helpful for precision design of machine tools. Screw theory and rigid body kinematics are used to establish the error model of an RRTTT-type five-axis machine tool, which enables the source errors affecting the compensable and uncompensable pose accuracy of the machine tool to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for the accuracy improvement by suitable measures, that is, component tolerancing in design, manufacturing, and assembly processes, and error compensation. The sensitivity analysis method is proposed, and the sensitivities of compensable and uncompensable pose accuracies are analyzed. The analysis results will be used for the precision design of the machine tool.


2012 ◽  
Vol 271-272 ◽  
pp. 493-497
Author(s):  
Wei Qing Wang ◽  
Huan Qin Wu

Abstract: In order to determine that the effect of geometric error to the machining accuracy is an important premise for the error compensation, a sensitivity analysis method of geometric error is presented based on multi-body system theory in this paper. An accuracy model of five-axis machine tool is established based on multi-body system theory, and with 37 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The analysis result shows that the presented method can identify the important geometric errors having large influence on volumetric error of machine tool and is of help to improve the accuracy of machine tool economically.


2013 ◽  
Vol 457-458 ◽  
pp. 1562-1565
Author(s):  
Qiang Huang ◽  
Chan Jun Gao

Error modeling and analysis can provide some important direction to the machining precision control. According to the characteristics of topology structure on machine tool, a space error model of machine tool and detailed modeling method are presented in this paper, which are based on three-dimensional vector chain. Taking a lathe as an example, the application method of this model in error sensitivity analysis is introduced. By this model, the relationship between the relative error of workpiece-tool and each source error can be solved by ordinary vector operation, and the analysis efficiency should be enhanced greatly.


2013 ◽  
Vol 303-306 ◽  
pp. 627-631 ◽  
Author(s):  
Zhen Yu Han ◽  
Hong Yu Jin ◽  
Yu Long Liu ◽  
Hong Ya Fu

Error compensation can improve the accuracy of machine tools effectively. Among the error sources affecting the accuracy of CNC machine tool, geometric error is always set as a key performance criterion. This paper summarizes several methods of geometric error modeling and reviews the characteristics of different methods. Furthermore, available methods for measuring geometric errors have been reviewed also based on the advanced instruments. This work aims at enhancing the efficiency of error detection and give a perspective for the application of error compensation in the future.


2013 ◽  
Vol 303-306 ◽  
pp. 1782-1785
Author(s):  
Chong Zhi Mao ◽  
Qian Jian Guo

The purpose of this research is to improve the machining accuracy of a CNC machine tool through thermal error modeling and compensation. In this paper, a thermal error model based on back propagation networks (BPN) is presented, and the compensation is fulfilled. The results show that the BPN model improves the prediction accuracy of thermal errors on the CNC machine tool, and the thermal drift has been reduced from 15 to 5 after compensation.


Author(s):  
Xuan Luo ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Jie Li

5-Degree-of-freedom parallel kinematic machine tools are always attractive in manufacturing industry due to the ability of five-axis machining with high stiffness/mass ratio and flexibility. In this article, error modeling and sensitivity analysis of a novel 5-degree-of-freedom parallel kinematic machine tool are discussed for its accuracy issues. An error modeling method based on screw theory is applied to each limb, and then the error model of the parallel kinematic machine tool is established and the error mapping Jacobian matrix of 53 geometric errors is derived. Considering that geometric errors exert both impacts on value and direction of the end-effector’s pose error, a set of sensitivity indices and an easy routine for sensitivity analysis are proposed according to the error mapping Jacobian matrix. On this basis, 10 vital errors and 10 trivial errors are identified over the prescribed workspace. To validate the effects of sensitivity analysis, several numerical simulations of accuracy design are conducted, and three-dimensional model assemblies with relevant geometric errors are established as well. The simulations exhibit maximal −0.10% and 0.34% improvements of the position and orientation errors, respectively, after modifying 10 trivial errors, while minimal 65.56% and 55.17% improvements of the position and orientation errors, respectively, after modifying 10 vital errors. Besides the assembly reveals an output pose error of (0.0134 mm, 0.0020 rad) with only trivial errors, while (2.0338 mm, 0.0048 rad) with only vital errors. In consequence, both results of simulations and assemblies validate the correctness of the sensitivity analysis. Moreover, this procedure can be extended to any other parallel kinematic mechanisms easily.


2010 ◽  
Vol 135 ◽  
pp. 170-173 ◽  
Author(s):  
Qian Jian Guo ◽  
Jian Guo Yang

Four key temperature points of a CNC machine tool were obtained in this paper, and a thermal error model based on the four key temperature points was proposed by using based back propagation neural network. A thermal error compensation system was developed based on the proposed model, and which has been applied to the CNC machine tool in daily production. The results show that the thermal error in workpiece diameter has been reduced from 33 to 6 .


Sign in / Sign up

Export Citation Format

Share Document