Current State of the Art: Problem-Driven Multi-Functional Bio-Inspired Designs
Abstract The development of multi-functional designs is one of the prime reasons to adopt bio-inspired design in engineering design. However, the development of multi-functional bio-inspired designs is mostly solution-driven, in the sense that an available multi-functional solution drives the search for a problem that can be solved by implementing the available solution. The solution-driven nature of the approach restricts the engineering designers to the use of the function combinations found in nature. On the other hand, a problem-driven approach to multi-functional designs allows the designers to form some combination of functions best suited for the problem at hand. However, few works exist in the literature that focus on the development of multi-functional bio-inspired solutions from a problem-driven perspective. In this work, we analyze the existing works that aid the designers in combining multiple biological strategies to develop multi-functional bio-inspired designs. The analysis is carried out by comparing and contrasting the existing frameworks that support multi-functional bio-inspired design generation. The criteria of comparison are derived from the steps involved in the unified problem-driven biomimetic approach. In addition, we qualitatively compare the multi-functional bio-inspired designs developed using existing frameworks to the multi-functional designs existing in biology. Our aim is to explore the capabilities and limitations of current methods to support the generation multi-functional bio-inspired designs.