2:1 MUX and OR Logic Functions Using Triple Partial Electrodes: Toward Cascadable MEMS Logic Devices

Author(s):  
Sherif A. Tella ◽  
Mohammad I. Younis

Abstract In the era of IoT and smarter sensors and actuators, MEMS resonators are actively being explored for ultra-low-power computing devices due to their simplicity and potential toward energy-efficient computing machines. However, the realization of complex logic functions through the cascadability of MEMS resonator logic devices has introduced new challenges that require both the logic input and logic output signals to be based on AC signals at the same frequency. Toward these challenges, this study demonstrates 2:1 MUX function and OR gate with improved energy efficiency based on activation and deactivation of the third vibrational mode of an arch microbeam resonator with a pair of three partial electrodes.

Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Bo Jiang ◽  
Shenhu Huang ◽  
Jing Zhang ◽  
Yan Su

High-quality-factor Micro-Electro-Mechanical System (MEMS) resonators have been widely used in sensors and actuators to obtain great mechanical sensitivity. The frequency drift of resonator with temperature is a problem encountered practically. The paper focuses on the resonator frequency distribution law in the temperature range of—40 to 60 °C. The four-layer models were established to analyze thermal stress caused by temperature due to the mismatch of thermal expansion coefficients. The temperature variation leads to the transformation of stress, which leads to the shift of resonance frequency. The paper analyzes the influence of hard and soft adhesive package on the temperature coefficient of frequency. The resonant accelerometer was employed for the frequency measurements in the paper. In experiments, three types of adhesive dispensing patterns were implemented. The results are consistent with the simulation well. The optimal packaging method achieves −24.1 ppm/°C to −30.2 ppm/°C temperature coefficient of the resonator in the whole temperature range, close to the intrinsic property of silicon (−31 ppm).


Author(s):  
Nouha Alcheikh ◽  
Sherif A. Tella ◽  
Mohammad I. Younis

Complex logic functions based on micro electromechanical resonators has recently attracted significant attention. Realization of complex logic functions through cascading micro resonators has been deterred by challenges involved in their interconnections and the large required array of resonators. This paper presents a micro electromechanical system MEMS resonator with multiple input (actuation) and output (detection) that enables the realization of complex logic operations. The devices are based on a compound resonator consisting of an in-plane clamped-guided arch beam that is mechanically coupled from its guided side to two flexure beams and to another T-shaped resonant beam. As examples, we experimentally demonstrate using the device to realize a half adder and a 1:2 DEMUX, based on electrothermal and electrostatic tuning of the arch beam and side resonant beam. The logic operation is based on the linear frequency modulation. This paper demonstrates that with such compound MEMS resonators, it is possible to build more complex logic functionalities.


2013 ◽  
Vol 562-565 ◽  
pp. 436-440
Author(s):  
Chao Wei Si ◽  
Guo Wei Han ◽  
Jin Ning ◽  
Wei Wei Zhong ◽  
Fu Hua Yang

A new kind of wind sensor made up of MEMS resonators is designed in the paper capable of sensing the lift, the resistance and the turbulence of airplane wings by mounting on the surface. The designed wind sensor is made up of four MEMS wind pressure gauges fixed around a square wind resistance block which used to block the wind to change the wind pressure on the surface, and the change of wind pressure is detected by MEMS wind pressure gauges to reveal the air condition on the surface of the airplane wings. As known, a MEMS resonator is a second-order resonant system whose damping factor is mainly dependent on the air pressure, and the characteristic is often used to detecting the airtightness of a sealed chamber for the damping factor is sensitive under high vacuum, while a MEMS resonator with the damping factor sensitive at atmospheric pressure is designed in this paper for sensing wind pressure change, and the MEMS resonator is manufactured on SOI substrates with deep reactive ion etching technology. Also relations between the wind pressure change and the wind speed around a block at atmosphere is revealed by finite element simulation. Compared to traditional wind sensors such as anemometers and Venturi tubes, the designed MEMS wind sensor with a very small size is suitable to mount on different zones of a wing with a large amount to monitor the air condition and have less influence on air flow.


2013 ◽  
Vol 39 (6) ◽  
pp. 295-300
Author(s):  
D. A. Grushin ◽  
N. N. Kuzyurin

Author(s):  
Dumitru I. Caruntu ◽  
Christian Reyes

This paper deals with the voltage-amplitude response (or voltage response) of superharmonic resonance of second order of MEMS resonator sensors under electrostatic actuation. The system consists of a MEMS flexible cantilever above a parallel ground plate. The AC frequency of actuation is near one fourth the natural frequency. The voltage response of the superharmonic resonance of second order of the structure is investigated using the Reduced Order Model (ROM) method. Effects of voltage and damping voltage response are reported.


Sign in / Sign up

Export Citation Format

Share Document