Towards Generalization of Intelligent Fault Detection for Roller Element Bearings via Distinct Dataset Transfer Learning

2021 ◽  
Author(s):  
Justin Larocque-Villiers ◽  
Patrick Dumond

Abstract Through the intelligent classification of bearing faults, predictive maintenance provides for the possibility of service schedule, inventory, maintenance, and safety optimization. However, real-world rotating machinery undergo a variety of operating conditions, fault conditions, and noise. Due to these factors, it is often required that a fault detection algorithm perform accurately even on data outside its trained domain. Although open-source datasets offer an incredible opportunity to advance the performance of predictive maintenance technology and methods, more research is required to develop algorithms capable of generalized intelligent fault detection across domains and discrepancies. In this study, current benchmarks on source–target domain discrepancy challenges are reviewed using the Case Western Reserve University (CWRU) and the Paderborn University (PbU) datasets. A convolutional neural network (CNN) architecture and data augmentation technique more suitable for generalization tasks is proposed and tested against existing benchmarks on the Pb U dataset by training on artificial faults and testing on real faults. The proposed method improves fault classification by 13.35%, with less than half the standard deviation of the compared benchmark. Transfer learning is then used to leverage the larger PbU dataset in order to make predictions on the CWRU dataset under a challenging source-target domain discrepancy in which there is minimal training data to adequately represent unseen bearing faults. The transfer learning-based CNN is found to be capable of generalizing across two open-source datasets, resulting in an improvement in accuracy from 53.1% to 68.3%.

2021 ◽  
Author(s):  
Huafeng Zhou ◽  
Pei-Yuan Cheng ◽  
Si-Yu Shao ◽  
Yu-Wei Zhao ◽  
Xin-Yu Yang

Abstract Deep learning-based mechanical fault diagnosis method has made great achievements. A high-performance neural network model requires sufficient labelled data for training to obtain accurate classification results. Desired results mainly depends on assumption that training and testing data are collected under the same working conditions, environment and operating conditions, where the data have the same probability distribution. However, in the practical scenarios, training data and the testing data follow different distributions to some degree, and the newly collected testing data are usually unlabeled. In order to solve the problems above, a model based on transfer learning and domain adaptation is proposed to achieve efficient fault diagnosis under different data distributions. The proposed framework adapts the features extracted by multiple dynamic convolutional layers, and creatively utilizes correlation alignment(CORAL) to perform a non-linear transformation to align the second-order statistics of the two distributions for fault diagnosis, which greatly improves the accuracy of fault classification in the target domain under unlabeled data. Finally, experimental verifications have been carried out among two different datasets.


2021 ◽  
Vol 11 (5) ◽  
pp. 2166
Author(s):  
Van Bui ◽  
Tung Lam Pham ◽  
Huy Nguyen ◽  
Yeong Min Jang

In the last decade, predictive maintenance has attracted a lot of attention in industrial factories because of its wide use of the Internet of Things and artificial intelligence algorithms for data management. However, in the early phases where the abnormal and faulty machines rarely appeared in factories, there were limited sets of machine fault samples. With limited fault samples, it is difficult to perform a training process for fault classification due to the imbalance of input data. Therefore, data augmentation was required to increase the accuracy of the learning model. However, there were limited methods to generate and evaluate the data applied for data analysis. In this paper, we introduce a method of using the generative adversarial network as the fault signal augmentation method to enrich the dataset. The enhanced data set could increase the accuracy of the machine fault detection model in the training process. We also performed fault detection using a variety of preprocessing approaches and classified the models to evaluate the similarities between the generated data and authentic data. The generated fault data has high similarity with the original data and it significantly improves the accuracy of the model. The accuracy of fault machine detection reaches 99.41% with 20% original fault machine data set and 93.1% with 0% original fault machine data set (only use generate data only). Based on this, we concluded that the generated data could be used to mix with original data and improve the model performance.


Author(s):  
Jianqun Zhang ◽  
Qing Zhang ◽  
Xianrong Qin ◽  
Yuantao Sun

To identify rolling bearing faults under variable load conditions, a method named DISA-KNN is proposed in this paper, which is based on the strategy of feature extraction-domain adaptation-classification. To be specific, the time-domain and frequency-domain indicators are used for feature extraction. Discriminative and domain invariant subspace alignment (DISA) is used to minimize the data distributions’ discrepancies between the training data (source domain) and testing data (target domain). K-nearest neighbor (KNN) is applied to identify rolling bearing faults. DISA-KNN’s validation is proved by the experimental signal collected under different load conditions. The identification accuracies obtained by the DISA-KNN method are more than 90% on four datasets, including one dataset with 99.5% accuracy. The strength of the proposed method is further highlighted by comparisons with the other 8 methods. These results reveal that the proposed method is promising for the rolling bearing fault diagnosis in real rotating machinery.


2018 ◽  
Vol 8 (12) ◽  
pp. 2416 ◽  
Author(s):  
Ansi Zhang ◽  
Honglei Wang ◽  
Shaobo Li ◽  
Yuxin Cui ◽  
Zhonghao Liu ◽  
...  

Prognostics, such as remaining useful life (RUL) prediction, is a crucial task in condition-based maintenance. A major challenge in data-driven prognostics is the difficulty of obtaining a sufficient number of samples of failure progression. However, for traditional machine learning methods and deep neural networks, enough training data is a prerequisite to train good prediction models. In this work, we proposed a transfer learning algorithm based on Bi-directional Long Short-Term Memory (BLSTM) recurrent neural networks for RUL estimation, in which the models can be first trained on different but related datasets and then fine-tuned by the target dataset. Extensive experimental results show that transfer learning can in general improve the prediction models on the dataset with a small number of samples. There is one exception that when transferring from multi-type operating conditions to single operating conditions, transfer learning led to a worse result.


2021 ◽  
Author(s):  
Shufeng Kong ◽  
Dan Guevarra ◽  
Carla P. Gomes ◽  
John Gregoire

The adoption of machine learning in materials science has rapidly transformed materials property prediction. Hurdles limiting full capitalization of recent advancements in machine learning include the limited development of methods to learn the underlying interactions of multiple elements, as well as the relationships among multiple properties, to facilitate property prediction in new composition spaces. To address these issues, we introduce the Hierarchical Correlation Learning for Multi-property Prediction (H-CLMP) framework that seamlessly integrates (i) prediction using only a material’s composition, (ii) learning and exploitation of correlations among target properties in multitarget regression, and (iii) leveraging training data from tangential domains via generative transfer learning. The model is demonstrated for prediction of spectral optical absorption of complex metal oxides spanning 69 3-cation metal oxide composition spaces. H-CLMP accurately predicts non-linear composition-property relationships in composition spaces for which no training data is available, which broadens the purview of machine learning to the discovery of materials with exceptional properties. This achievement results from the principled integration of latent embedding learning, property correlation learning, generative transfer learning, and attention models. The best performance is obtained using H-CLMP with Transfer learning (H-CLMP(T)) wherein a generative adversarial network is trained on computational density of states data and deployed in the target domain to augment prediction of optical absorption from composition. H-CLMP(T) aggregates multiple knowledge sources with a framework that is well-suited for multi-target regression across the physical sciences.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141984086 ◽  
Author(s):  
Chuanqi Tan ◽  
Fuchun Sun ◽  
Bin Fang ◽  
Tao Kong ◽  
Wenchang Zhang

The brain–computer interface-based rehabilitation robot has quickly become a very important research area due to its natural interaction. One of the most important problems in brain–computer interface is that large-scale annotated electroencephalography data sets required by advanced classifiers are almost impossible to acquire because biological data acquisition is challenging and quality annotation is costly. Transfer learning relaxes the hypothesis that the training data must be independent and identically distributed with the test data. It can be considered a powerful tool for solving the problem of insufficient training data. There are two basic issues with transfer learning, under transfer and negative transfer. We proposed a novel brain–computer interface framework by using autoencoder-based transfer learning, which includes three main components: an autoencoder framework, a joint adversarial network, and a regularized manifold constraint. The autoencoder framework automatically encodes and reconstructs data from source and target domains and forces the neural network to learn to represent these domains reliably. The joint adversarial network aims to force the network to learn to encode more appropriately for the source domain and target domain simultaneously, thereby overcoming the problem of under transfer. The regularized manifold constraint aims to avoid the problem of negative transfer by avoiding geometric manifold structure in the target domain being destroyed by the source domain. Experiments show that the brain–computer interface framework proposed by us can achieve better results than state-of-the-art approaches in electroencephalography signal classification tasks. This is helpful in aiding our rehabilitation robot to understand the intention of patients and can help patients to carry out rehabilitation exercises effectively.


2020 ◽  
Vol 10 (13) ◽  
pp. 4523 ◽  
Author(s):  
Laith Alzubaidi ◽  
Mohammed A. Fadhel ◽  
Omran Al-Shamma ◽  
Jinglan Zhang ◽  
J. Santamaría ◽  
...  

One of the main challenges of employing deep learning models in the field of medicine is a lack of training data due to difficulty in collecting and labeling data, which needs to be performed by experts. To overcome this drawback, transfer learning (TL) has been utilized to solve several medical imaging tasks using pre-trained state-of-the-art models from the ImageNet dataset. However, there are primary divergences in data features, sizes, and task characteristics between the natural image classification and the targeted medical imaging tasks. Therefore, TL can slightly improve performance if the source domain is completely different from the target domain. In this paper, we explore the benefit of TL from the same and different domains of the target tasks. To do so, we designed a deep convolutional neural network (DCNN) model that integrates three ideas including traditional and parallel convolutional layers and residual connections along with global average pooling. We trained the proposed model against several scenarios. We utilized the same and different domain TL with the diabetic foot ulcer (DFU) classification task and with the animal classification task. We have empirically shown that the source of TL from the same domain can significantly improve the performance considering a reduced number of images in the same domain of the target dataset. The proposed model with the DFU dataset achieved F1-score value of 86.6% when trained from scratch, 89.4% with TL from a different domain of the targeted dataset, and 97.6% with TL from the same domain of the targeted dataset.


Author(s):  
Fouzia Altaf ◽  
Syed M. S. Islam ◽  
Naeem Khalid Janjua

AbstractDeep learning has provided numerous breakthroughs in natural imaging tasks. However, its successful application to medical images is severely handicapped with the limited amount of annotated training data. Transfer learning is commonly adopted for the medical imaging tasks. However, a large covariant shift between the source domain of natural images and target domain of medical images results in poor transfer learning. Moreover, scarcity of annotated data for the medical imaging tasks causes further problems for effective transfer learning. To address these problems, we develop an augmented ensemble transfer learning technique that leads to significant performance gain over the conventional transfer learning. Our technique uses an ensemble of deep learning models, where the architecture of each network is modified with extra layers to account for dimensionality change between the images of source and target data domains. Moreover, the model is hierarchically tuned to the target domain with augmented training data. Along with the network ensemble, we also utilize an ensemble of dictionaries that are based on features extracted from the augmented models. The dictionary ensemble provides an additional performance boost to our method. We first establish the effectiveness of our technique with the challenging ChestXray-14 radiography data set. Our experimental results show more than 50% reduction in the error rate with our method as compared to the baseline transfer learning technique. We then apply our technique to a recent COVID-19 data set for binary and multi-class classification tasks. Our technique achieves 99.49% accuracy for the binary classification, and 99.24% for multi-class classification.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1497
Author(s):  
Harold Achicanoy ◽  
Deisy Chaves ◽  
Maria Trujillo

Deep learning applications on computer vision involve the use of large-volume and representative data to obtain state-of-the-art results due to the massive number of parameters to optimise in deep models. However, data are limited with asymmetric distributions in industrial applications due to rare cases, legal restrictions, and high image-acquisition costs. Data augmentation based on deep learning generative adversarial networks, such as StyleGAN, has arisen as a way to create training data with symmetric distributions that may improve the generalisation capability of built models. StyleGAN generates highly realistic images in a variety of domains as a data augmentation strategy but requires a large amount of data to build image generators. Thus, transfer learning in conjunction with generative models are used to build models with small datasets. However, there are no reports on the impact of pre-trained generative models, using transfer learning. In this paper, we evaluate a StyleGAN generative model with transfer learning on different application domains—training with paintings, portraits, Pokémon, bedrooms, and cats—to generate target images with different levels of content variability: bean seeds (low variability), faces of subjects between 5 and 19 years old (medium variability), and charcoal (high variability). We used the first version of StyleGAN due to the large number of publicly available pre-trained models. The Fréchet Inception Distance was used for evaluating the quality of synthetic images. We found that StyleGAN with transfer learning produced good quality images, being an alternative for generating realistic synthetic images in the evaluated domains.


This research is aimed to achieve high-precision accuracy and for face recognition system. Convolution Neural Network is one of the Deep Learning approaches and has demonstrated excellent performance in many fields, including image recognition of a large amount of training data (such as ImageNet). In fact, hardware limitations and insufficient training data-sets are the challenges of getting high performance. Therefore, in this work the Deep Transfer Learning method using AlexNet pre-trained CNN is proposed to improve the performance of the face-recognition system even for a smaller number of images. The transfer learning method is used to fine-tuning on the last layer of AlexNet CNN model for new classification tasks. The data augmentation (DA) technique also proposed to minimize the over-fitting problem during Deep transfer learning training and to improve accuracy. The results proved the improvement in over-fitting and in performance after using the data augmentation technique. All the experiments were tested on UTeMFD, GTFD, and CASIA-Face V5 small data-sets. As a result, the proposed system achieved a high accuracy as 100% on UTeMFD, 96.67% on GTFD, and 95.60% on CASIA-Face V5 in less than 0.05 seconds of recognition time.


Sign in / Sign up

Export Citation Format

Share Document