Comparison of Two Multiobjective Optimization Techniques With and Within Genetic Algorithms

Author(s):  
Shapour Azar ◽  
Brian J. Reynolds ◽  
Sanjay Narayanan

Abstract Engineering decision making involving multiple competing objectives relies on choosing a design solution from an optimal set of solutions. This optimal set of solutions, referred to as the Pareto set, represents the tradeoffs that exist between the competing objectives for different design solutions. Generation of this Pareto set is the main focus of multiple objective optimization. There are many methods to solve this type of problem. Some of these methods generate solutions that cannot be applied to problems with a combination of discrete and continuous variables. Often such solutions are obtained by an optimization technique that can only guarantee local Pareto solutions or is applied to convex problems. The main focus of this paper is to demonstrate two methods of using genetic algorithms to overcome these problems. The first method uses a genetic algorithm with some external modifications to handle multiple objective optimization, while the second method operates within the genetic algorithm with some significant internal modifications. The fact that the first method operates with the genetic algorithm and the second method within the genetic algorithm is the main difference between these two techniques. Each method has its strengths and weaknesses, and it is the objective of this paper to compare and contrast the two methods quantitatively as well as qualitatively. Two multiobjective design optimization examples are used for the purpose of this comparison.

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Fayiz Abu Khadra ◽  
Jaber Abu Qudeiri ◽  
Mohammed Alkahtani

A control methodology based on a nonlinear control algorithm and optimization technique is presented in this paper. A controller called “the robust integral of the sign of the error” (in short, RISE) is applied to control chaotic systems. The optimum RISE controller parameters are obtained via genetic algorithm optimization techniques. RISE control methodology is implemented on two chaotic systems, namely, the Duffing-Holms and Van der Pol systems. Numerical simulations showed the good performance of the optimized RISE controller in tracking task and its ability to ensure robustness with respect to bounded external disturbances.


Author(s):  
Wenting Mo ◽  
Sheng-Uei Guan ◽  
Sadasivan Puthusserypady

Many Multiple Objective Genetic Algorithms (MOGAs) have been designed to solve problems with multiple conflicting objectives. Incremental approach can be used to enhance the performance of various MOGAs, which was developed to evolve each objective incrementally. For example, by applying the incremental approach to normal MOGA, the obtained Incremental Multiple Objective Genetic Algorithm (IMOGA) outperforms state-of-the-art MOGAs, including Non-dominated Sorting Genetic Algorithm-II (NSGA-II), Strength Pareto Evolutionary Algorithm (SPEA) and Pareto Archived Evolution Strategy (PAES). However, there is still an open question: how to decide the order of the objectives handled by incremental algorithms? Due to their incremental nature, it is found that the ordering of objectives would influence the performance of these algorithms. In this paper, the ordering issue is investigated based on IMOGA, resulting in a novel objective ordering approach. The experimental results on benchmark problems showed that the proposed approach can help IMOGA reach its potential best performance.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 139
Author(s):  
Maxinder S Kanwal ◽  
Avinash S Ramesh ◽  
Lauren A Huang

Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates.


Author(s):  
Bhargav Appasani ◽  
Rahul Pelluri ◽  
Vijay Kumar Verma ◽  
Nisha Gupta

Genetic Algorithm (GA) is a widely used optimization technique with multitudinous applications. Improving the performance of the GA would further augment its functionality. This paper presents a Crossover Improved GA (CIGA) that emulates the motion of fireflies employed in the Firefly Algorithm (FA). By employing this mimicked crossover operation, the overall performance of the GA is greatly enhanced. The CIGA is tested on 14 benchmark functions conjointly with the other existing optimization techniques to establish its superiority. Finally, the CIGA is applied to the practical optimization problem of synthesizing non-uniform linear antenna arrays with low side lobe levels (SLL) and low beam width, both requirements being incompatible. However, the proposed CIGA applied for the synthesis of a 12 element array yields an SLL of [Formula: see text]29.2[Formula: see text]dB and a reduced beam width of 19.1[Formula: see text].


2011 ◽  
Vol 69 ◽  
pp. 17-22
Author(s):  
Lei Chen

Springback during unloading affects the dimensional accuracy of sheet metal parts. This paper proposes a finite element model to predict springback with contact evolution between the sheet and dies. The underlying formulation is based on updated Lagrangian elastoplastic materials model. The solutions validated with experimental data of NUMISHEET’93 show more accurately. The effects of the variable blank holding force (VBHF) on springback results are investigated based on genetic algorithms (GAs) for the determination of the parameters in blank holding operations. It has been found that the GAs based optimization technique is very effective in solving this kind of problem. The difficulty of choosing correct starting values for the constants in the traditional optimization techniques has been completely overcome and the GAs technique provides a better chance to converge to the global minimum.


Author(s):  
Dian Mustikaningrum ◽  
Retantyo Wardoyo

 Acute Myeloid Leukimia (AML) is a type of cancer which attacks white blood cells from myeloid. AML subtypes M1, M2, and M3 are affected by the same type of cells called myeloblasts, so it needs more detailed analysis to classify.Momentum Backpropagation  is used to classified. In its application, optimal selection of architecture, learning rate, and momentum is still done by random trial. This is one of the disadvantage of Momentum Backpropagation. This study uses a genetic algorithm (GA) as an optimization method to get the best architecture, learning rate, and momentum of artificial neural network. Genetic algorithms are one of the optimization techniques that emulate the process of biological evolution.The dataset used in this study is numerical feature data resulting from the segmentation of white blood cell images taken from previous studies which has been done by Nurcahya Pradana Taufik Prakisya. Based on these data, an evaluation of the Momentum Backpropagation process was conducted the selection parameter in a random trial with the genetic algorithm. Furthermore, the comparison of accuracy values was carried out as an alternative to the ANN learning method that was able to provide more accurate values with the data used in this study.The results showed that training and testing with genetic algorithm optimization of ANN parameters resulted in an average memorization accuracy of 83.38% and validation accuracy of 94.3%. Whereas in other ways, training and testing with momentum backpropagation random trial resulted in an average memorization accuracy of 76.09% and validation accuracy of 88.22%.


Author(s):  
Koushik Majumder ◽  
Debashis De ◽  
Senjuti Kar ◽  
Rani Singh

Mobile Ad hoc Networks (MANET) are wireless infrastructure less networks that are formed spontaneously and are highly dynamic in nature. Clustering is done in MANETs to address issues related to scalability, heterogeneity and to reduce network overhead. In clustering the entire network is divided into clusters or groups with one Cluster Head (CH) per cluster. The process of CH selection and route optimization is extremely crucial in clustering. Genetic Algorithm (GA) can be implemented to optimize the process of clustering in MANETs. GA is the most recently used advanced bio-inspired optimization technique which implements techniques of genetics like selection, crossover, mutation etc. to find out an improved solution to a problem similar to the next generation that inherits the positive traits and features of the previous one. In this chapter several genetic algorithm based optimization techniques for clustering has been discussed. A comparative analysis of the different approaches has also been presented. This chapter concludes with future research directions in this domain.


2011 ◽  
pp. 140-160
Author(s):  
Sheng-Uei Guan ◽  
Chang Ching Chng ◽  
Fangming Zhu

This chapter proposes the establishment of OntoQuery in an m-commerce agent framework. OntoQuery represents a new query formation approach that combines the usage of ontology and keywords. This approach takes advantage of the tree pathway structure in ontology to form queries visually and efficiently. Also, it uses keywords to complete the query formation process more efficiently. Present query optimization techniques like relevance feedback use expensive iterations. The proposed information retrieval scheme focuses on using genetic algorithms to improve computational effectiveness. Mutations are done on queries formed in the earlier part by replacing terms with synonyms. Query optimization techniques used include query restructuring by logical terms and numerical constraints replacement. Also, the fitness function of the genetic algorithm is defined by three elements, number of documents retrieved, quality of documents, and correlation of queries. The number and quality of documents retrieved give the basic strength of a mutated query.


Sign in / Sign up

Export Citation Format

Share Document