Development of the Renewable Energy Deployment and Display (REDD) Facility at the Desert Research Institute

Author(s):  
Christopher Damm ◽  
Elise Strobach ◽  
Curtis Robbins ◽  
Amber Broch ◽  
Robert Turner ◽  
...  

The Desert Research Institute (DRI) has developed a Renewable Energy Deployment and Display (REDD) Facility as an off-grid capable facility for exploration of integration, control, and optimization of distributed energy resources (DER) with an emphasis on solar and wind energy. The primary goal of the facility is to help grow DRI’s capabilities and expertise in areas of renewable energy research, development, demonstration, and deployment. The facility is powered by four solar PV arrays (6 kW total) and two wind turbines (3 kW total) during off-grid operation. Energy storage is achieved via two 2.5 m3 hydrogen storage tanks and a 9 kWh battery bank. The hydrogen is produced via a 5 kW electrolyzer and is used to fuel an internal combustion engine (ICE) with an alternator when needed. The REDD Facility consists of a 111.5 m2 residence and a 56 m2 workshop. The REDD House features over 37 m2 of solar thermal collectors used to provide hot water to either a 15.9 kW heat exchanger or a 17.6 kW absorption chiller. The REDD Workshop features a 54 m2 solar collector air heater and thermal storage via water and air in the floor. Also housed in the REDD Workshop is a modified 3-cylinder 950cc naturally aspirated renewable gas engine connected to a 5 kW generator to be used for future biomass-related research. Future research at the REDD Facility will include continued investigation into the use and regulation of site-built solar air collectors, solar cooling technologies, and the advancement of hydrogen as energy storage for residential applications. The facility is also continually used for education and outreach purposes. Lastly, DRI encourages the use of the REDD Facility as a test bench for new technologies; whether for proof of concept or demonstration.

2021 ◽  
pp. 0958305X2199229
Author(s):  
Jingyu Qu ◽  
Wooyoung Jeon

Renewable generation sources still have not achieved economic validity in many countries including Korea, and require subsidies to support the transition to a low-carbon economy. An initial Feed-In Tariff (FIT) was adopted to support the deployment of renewable energy in Korea until 2011 and then was switched to the Renewable Portfolio Standard (RPS) to implement more market-oriented mechanisms. However, high volatilities in electricity prices and subsidies under the RPS scheme have weakened investment incentives. In this study we estimate how the multiple price volatilities under the RPS scheme affect the optimal investment decisions of energy storage projects, whose importance is increasing rapidly because they can mitigate the variability and uncertainty of solar and wind generation in the power system. We applied mathematical analysis based on real-option methods to estimate the optimal trigger price for investment in energy-storage projects with and without multiple price volatilities. We found that the optimal trigger price of subsidy called the Renewable Energy Certificate (REC) under multiple price volatilities is 10.5% higher than that under no price volatilities. If the volatility of the REC price gets doubled, the project requires a 26.6% higher optimal investment price to justify the investment against the increased risk. In the end, we propose an auction scheme that has the advantage of both RPS and FIT in order to minimize the financial burden of the subsidy program by eliminating subsidy volatility and find the minimum willingness-to-accept price for investors.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4284
Author(s):  
Min-Hwi Kim ◽  
Youngsub An ◽  
Hong-Jin Joo ◽  
Dong-Won Lee ◽  
Jae-Ho Yun

Due to increased grid problems caused by renewable energy systems being used to realize zero energy buildings and communities, the importance of energy sharing and self-sufficiency of renewable energy also increased. In this study, the energy performance of an energy-sharing community was investigated to improve its energy efficiency and renewable energy self-sufficiency. For a case study, a smart village was selected via detailed simulation. In this study, the thermal energy for cooling, heating, and domestic hot water was produced by ground source heat pumps, which were integrated with thermal energy storage (TES) with solar energy systems. We observed that the ST system integrated with TES showed higher self-sufficiency with grid interaction than the PV and PVT systems. This was due to the heat pump system being connected to thermal energy storage, which was operated as an energy storage system. Consequently, we also found that the ST system had a lower operating energy, CO2 emissions, and operating costs compared with the PV and PVT systems.


2013 ◽  
Vol 316-317 ◽  
pp. 176-180 ◽  
Author(s):  
Xue Jing Zheng ◽  
Meng Jun Yang ◽  
Wan Dong Zheng ◽  
Yun Kun Bu

Sino-Singapore Tianjin Eco-city is a strategic cooperation project between China and Singapore to improve the living environment and build an eco-culture. Animation-park covers an area of 1 km2, with a total construction area of 7.7x105m2. Wide sources of the renewable energy, such as solar hot water system, ground source heat pump system, solar PV power generation system, and deep geothermal energy system, is strongly recommended to use in eco-city in order to save energy and protect the environment. The usage of renewable energy is seen as a complement to the conventional energy. The energy consumption of the animation park is 42926tce of coal per year, and the renewable energy that used is 4573.6tce of coal per year. The usage of renewable energy leads to the reduction in the emission of CO2 of 18895.9t per year.


2019 ◽  
Vol 11 (22) ◽  
pp. 6293 ◽  
Author(s):  
Seunghyun Park ◽  
Surender Reddy Salkuti

The proposed optimal energy management system balances the energy flows among the energy consumption by accelerating trains, energy production from decelerating trains, energy from wind and solar photovoltaic (PV) energy systems, energy storage systems, and the energy exchange with a traditional electrical grid. In this paper, an AC optimal power flow (AC-OPF) problem is formulated by optimizing the total cost of operation of a railroad electrical system. The railroad system considered in this paper is composed of renewable energy resources such as wind and solar PV systems, regenerative braking capabilities, and hybrid energy storage systems. The hybrid energy storage systems include storage batteries and supercapacitors. The uncertainties associated with wind and solar PV powers are handled using probability distribution functions. The proposed optimization problem is solved using the differential evolution algorithm (DEA). The simulation results show the suitability and effectiveness of proposed approach.


Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 18 ◽  
Author(s):  
Chen ◽  
Kuznik ◽  
Horgnies ◽  
Johannes ◽  
Morin ◽  
...  

More attention on renewable energy has been attracted after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its wide thermal usage for hot water and heating. However, the seasonal mismatch between its energy-production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, even if different kinds of energy storage systems using sensible or latent heat already exist, thermochemical energy storage can be then recommended by considering the problems of energy dissipation during storage and low energy density for the first two methods. As potential thermochemical storage materials, ettringite (3CaO∙Al2O3∙3CaSO4∙32H2O) based materials possess high energy densities (~500 kWh/m3), low material cost (<1000 €/m3) and low storage temperature (~60–70°C), compared to salt hydrates of similar energy density like SrBr2·6H2O (42 k€/m3, ~80°C), LaCl3·7H2O (38 k€/m3, ~100°C) and MgSO4·7H2O (5 k€/m3, ~150°C). Therefore, ettringite-based materials have the possibility to be largely used in building sector by being coupled to normal solar collector systems via reversible chemical reactions (Equation (1)): (i) charging mode: hot air or hot water (>70°C) from solar collectors dehydrates ettringite to meta-ettringite, and consequently store heat to chemical energy; ii) discharging mode: humid air is pumped to material container to rehydrate meta-ettringite, and consequently release stored chemical energy as heating. However, the lack of extensive examination leads to poor knowledge on their thermal properties and limits maturity of this technology. Therefore, the aim of this work is to characterize the capacity of an ettringite-based material (named C80P20, containing ~70 wt.% ettringite) in terms of thermal energy storage by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Besides, a modular reactor adapting to thermal characterizations of C80P20 particles has been developed for various weights (up to 300 grams). In our case, the energy density of pure ettringite is around 1012 J/g while 708 J/g for C80P20 powder in TGA-DSC. First preliminary results from modular reactor demonstrate a general energy density of 150 kWh/m3 released by the hydration process of C80P20 grains (pre-dehydrated at 80 °C) at 25 °C and 85% relative humidity. Moreover, the reactor is intended to study the durability of the energy storage material over time, and also as function of the number of charging/discharging cycles.CaO∙Al2O3∙3CaSO4∙32H2O ettringite+heat↔3CaO∙Al2O3∙3CaSO4∙32-XH2Ometa-ettringite+XH2O


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Prashant Sharan ◽  
Kevin Kitz ◽  
Daniel Wendt ◽  
Joshua McTigue ◽  
Guangdong Zhu

Abstract We propose a hybrid renewable energy system—a geothermal energy storage system (GeoTES) with solar—to provide low-cost dispatchable power at various timescales from daily, to weekly, to seasonally. GeoTES with solar uses a concentrating solar power collector field to produce hot water that is injected into a sedimentary basin to create a synthetic geothermal resource. The stored geothermal heat can then be dispatched when required by the electrical grid. GeoTES is particularly valuable for a grid with a high penetration of non-flexible renewable technologies such as photovoltaic and wind power. In this work, a sophisticated hybrid model is developed to assess the technical and economic potential of GeoTES by combining IPSEpro, which is a power-cycle simulation tool, and SAM, an economic analysis tool by National Renewable Energy Laboratory (NREL). The analysis shows with proper initial charging period that the heat loss in storage is almost negligible and is a suitable technology for long-term energy storage. Various power-cycle options are evaluated, and the most suitable power cycle is selected for further study. Annual calculations of the GeoTES system indicate that a levelized cost of storage (LCOS) of 12.4 ¢/kWhe can be achieved for seasonal storage of 4000 h; this value is much lower than the existing long-term storage. The LCOS of GeoTES is insensitive to the storage duration above 8 h, unlike battery and molten-salt thermal storage systems. This result demonstrates that GeoTES can be a competitive seasonal storage technology in the future electricity market. The levelized cost of electricity of the GeoTES system is also carefully analyzed and can vary between 10.0 and 16.4 ¢/kWhe, depending on solar-collector prices.


2021 ◽  
pp. 1-9
Author(s):  
T. N. Demayo ◽  
N. K. Herbert ◽  
D. M. Hernandez ◽  
J. J. Hendricks ◽  
B. Velasquez ◽  
...  

Summary This paper outlines one of the first efforts by a major oil and gas company to build a net-exporting, behind-the-meter solar photovoltaic (PV) plant to lower the operating costs and carbon intensity of a large, mature oil and gas field. The 29 MWAC (35 MWDC) Lost Hills solar plant in Lost Hills, California, USA, commissioned in April 2020, covers approximately 220 acres on land adjacent to the oil field and is designed to provide more than 1.4 TWh of solar energy over 20 years to the field’s oil and gas production and processing facilities. The upgrades to the electrical infrastructure in the field also include new technology to reduce the risk of sulfur hexafluoride emissions, another potent greenhouse gas (GHG). Before the solar project, the Lost Hills field was importing all its electricity from the grid. With the introduction of the Innovative Crude Program as part of California’s Low Carbon Fuel Standard (LCFS) and revisions to the California Public Utilities Commission Net Energy Metering program, Lost Hills was presented with a unique opportunity to reduce its imported electricity expenses and reduce its carbon intensity, while also generating LCFS credits. The solar plant was designed to power the field during the day and export excess power to the grid to help offset nighttime electricity purchases. It operates under a power purchase agreement (PPA) with the solar PV provider and, initially, will meet approximately 80% of the oil field’s energy needs. Future plans include incorporating 20 MWh of lithium-ion batteries, direct current (DC)–coupled with the solar inverters. This energy storage system will increase the amount of solar electricity fed directly into the field and reduce costs by controlling when the site uses stored solar electricity rather than electricity from the grid. The battery system will also increase the number of LCFS credits by 15% over credits generated by solar alone. Together, solar power and energy storage provide a robust renewable energy solution. This project will generate multiple cobenefits for the Lost Hills oil field by lowering the cost of power, reducing GHG emissions, generating state LCFS credits and federal Renewable Energy Certificates, and demonstrating a commitment to energy transition by investing in renewable technology. Conceivably, the Lost Hills solar project can be a model for similar future projects in other oil fields, not only in California, but across the globe.


2020 ◽  
Vol 12 (3) ◽  
pp. 811 ◽  
Author(s):  
Miklós Gyalai-Korpos ◽  
László Zentkó ◽  
Csaba Hegyfalvi ◽  
Gergely Detzky ◽  
Péter Tildy ◽  
...  

Despite the apparent stability of the electricity system from a consumer’s point of view, there is indeed significant effort exerted by network operators to guarantee the constancy of the electricity supply in order to meet demands any time. In the energy sector models provide an important conceptual framework to generate a range of insight, examine the impacts of different scenarios and analyze the supply and demand of energy. This paper presents a user-oriented and transparent modeling concept of the European calculator, a tool for delineating emission and sustainable transformation pathways at European and member state levels. The model consists of several modules of different sectors, where the energy supply module includes sub-modules for electricity generation, hydrogen production and oil refinery. The energy storage requirement module investigates how new technologies can help the stability of the European electricity system with increasing renewables penetration, demand-side measures and decarbonization paths. The objective of this study is to introduce the concept of this module with the main logical steps, especially the input parameters, assumptions, the basic data of electricity trade and maximum energy storage potential levels. The article also introduces and explains the feasibility of the theoretical maximum gross electricity generation potential from variable renewable energy for the European Union including Switzerland, compared to the demand in 2040. According to the results the electricity systems in the future will need to show ever increasing flexibility in order to cope with variable renewable energy production on the supply side, and shifting patterns of electricity consumption on the demand side.


2020 ◽  
Vol 22 (2) ◽  
pp. 479-494
Author(s):  
David Japikse ◽  
Francis A. Di Bella

AbstractA thermodynamic analysis of an advanced CAES for Distributed Power Generation (DPG) is presented that utilizes turbomachinery for energy recovery, but also gives continuous power generation to augment on-site power. The advanced CAES uses renewable energy such as wind power and solar PV in the power range of 1500 to 2500 kW plus recuperation of waste heat from the existing on-site prime mover to improve the utility of the energy storage system. The proposed system also utilizes battery storage to maintain high energy density storage, preferably without the need for costly electrical rectifying and inversion systems to improve the stabilization of power generation. This proposed system may be thought of as a “cross-over” system that combines CAES technology with electric battery storage technology, particularly if the stored electric power is used directly as D.C. power at an industrial facility. The direct use of stored energy from a battery as heat input to the proposed “cross-over” system also may be considered in some limited applications. The ideal application of the proposed system is for isolated DPG systems perhaps in remote sites utilizing “power islands” of renewable energy augmented with on-site fossil fuel prime mover, power generation systems. The proposed “cross-over” system enables higher reliability, faster response to transient power loads, and the efficient use of renewable energy, as well as heat recovery from conventional prime mover systems that are on site.


Sign in / Sign up

Export Citation Format

Share Document