Improvement of Rolling Contact Fatigue Life by a Preliminary Loading in Elastic-Plastic Domain

Author(s):  
Spiridon Cretu

An analysis model has been developed to model the nonlinear strain rate dependent deformation of rolling bearing steel stressed in the elastic-plastic domain. The model is developed in the frame of the incremental theory of plasticity by using the von Mises yield criterion and Prandtl-Reuss equations. By considering the isotropic and non-linear kinematic hardening laws of Lemaitre-Caboche, the model accounts for the cyclic hardening phenomena. To attain the final load of each loading cycle, the two bodies are brought into contact incrementally. For each new load increment new increments for the components of stress and strain tensors, but also increments of residual stresses, are computed for each point of the 3D mesh. Both, the new contact geometry and residual stresses distributions, are further considered as initial values for the next loading cycle, the incremental technique being reiterated. The cyclic evaluation process of both, plastic strains and residual stresses is performed until the material shakedowns. The experimental part of the paper regards to the rolling contact fatigue tests carried out on two groups of line contact test specimens and on two groups of deep groove ball bearings. In both cases, the experimental data reveal more than two times greater fatigue life for the group with induced residual stresses versus the life of the reference group. The von Mises equivalent stress is considered in Ioannides-Harris rolling contact fatigue model to obtain theoretical lives. The theoretical analysis revealed greater fatigue lives for the test specimens and for the ball bearings groups with induced residual stresses than the fatigue lives of the corresponding reference groups.

Author(s):  
Spiridon S. Cretu ◽  
Marcelin I. Benchea ◽  
Ovidiu S. Cretu

The fatigue life tests carried out on two groups of ball bearings confirm the positive influence of the compressive residual stresses induced by a previous loading in the elastic-plastic domain. The values of residual stresses are numerically evaluated by employing a three-dimensional strain deformation analysis model. The model is developed in the frame of the incremental theory of plasticity by using the von Mises yield criterion and Prandtl-Reuss equations. To consider the material behaviour the Ramberg-Osgood stress-strain equation is involved and a nonlinear equation is considered to model the influence of the retained austenite. To attain the final load of each loading cycle the two bodies are brought into contact incrementally, so that for each new load increment the new pressure distribution is obtained as the solution of a constrained system of equation. Conjugate gradients method in conjunction with discrete convolution fast Fourier transform is used to solve the huge system of equations. Both the new contact geometry and residual stresses distributions, are further considered as initial values for the next loading cycle, the incremental technique being reiterated. The cyclic evaluation process of both plastic strains and residual stresses is performed until the material shakedowns. Comparisons of the computed residual stresses and deformed profiles with corresponding measured values reveal a good agreement and validate the analysis model. The von Mises equivalent stress, able to include both elastic and residual stresses, is considered in Ioannides-Harris rolling contact fatigue model to obtain theoretical lives of the ball bearings groups. The theoretical analysis reveals also greater fatigue lives for the ball bearings groups with induced residual stresses than the fatigue lives of the group without induced residual stresses.


Author(s):  
S. Cretu ◽  
M. Benchea

The values of residual stresses resulting from a heavily stressed contact are numerically evaluated by employing a three-dimensional strain deformation analysis model. The model is developed in the frame of the incremental theory of plasticity including the von Mises yield criterion, Prandtl-Reuss equations, and Ramberg-Osgood stress-strain equation. Two groups of cylindrical specimens were subjected to rolling contact fatigue, one as the reference group and the other with an induced residual stresses state. To obtain theoretical lives of the tested groups the von Mises equivalent stress is used in Ioannides-Harris rolling contact fatigue model. Both, the experimental data and theoretical analysis reveal more than two times greater fatigue life for the group with induced residual stresses versus the life of the reference group.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Zamzam Golmohammadi ◽  
Farshid Sadeghi

A coupled multibody elastic–plastic finite element (FE) model was developed to investigate the effects of surface defects, such as dents on rolling contact fatigue (RCF). The coupled Voronoi FE model was used to determine the contact pressure acting over the surface defect, internal stresses, damage, etc. In order to determine the shape of a dent and material pile up during the over rolling process, a rigid indenter was pressed against an elastic plastic semi-infinite domain. Continuum damage mechanics (CDM) was used to account for material degradation during RCF. Using CDM, spall initiation and propagation in a line contact was modeled and investigated. A parametric study using the model was performed to examine the effects of dent sharpness, pile up ratio, and applied load on the spall formation and fatigue life. The spall patterns were found to be consistent with experimental observations from the open literature. Moreover, the results demonstrated that the dent shape and sharpness had a significant effect on pressure and thus fatigue life. Higher dent sharpness ratios significantly reduced the fatigue life.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1339
Author(s):  
Bernd Breidenstein ◽  
Berend Denkena ◽  
Alexander Krödel ◽  
Vannila Prasanthan ◽  
Gerhard Poll ◽  
...  

By combining different materials, for example, high-strength steel and unalloyed structural steel, hybrid components with specifically adapted properties to a certain application can be realized. The mechanical processing, required for production, influences the subsurface properties, which have a deep impact on the lifespan of solid components. However, the influence of machining-induced subsurface properties on the operating behavior of hybrid components with a material transition in axial direction has not been investigated. Therefore, friction-welded hybrid shafts were machined with different process parameters for hard-turning and subsequent deep rolling. After machining, subsurface properties such as residual stresses, microstructures, and hardness of the machined components were analyzed. Significant influencing parameters on surface and subsurface properties identified in analogy experiments are the cutting-edge microgeometry, S¯, and the feed, f, during turning. The deep-rolling overlap, u, hardly changes the residual stress depth profile, but it influences the surface roughness strongly. Experimental tests to determine fatigue life under combined rolling and rotating bending stress were carried out. Residual stresses of up to −1000 MPa, at a depth of 200 µm, increased the durability regarding rolling-contact fatigue by 22%, compared to the hard-turned samples. The material transition was not critical for failure.


2000 ◽  
Author(s):  
Salah R. Agha ◽  
C. Richard Liu

Abstract It was shown earlier [Agha and Liu, 1998, 1999, 2000] that different cutting conditions, within superfinish hard turning, would lead to significantly different rolling contact fatigue lives. In this study, residual stresses were measured. The rolling contact fatigue life was then modeled using a maximum modified equivalent stress that takes residual stresses into account. It is seen that the maximum modified equivalent stress is a better predictor than the maximum Hertzian stress, but, still not accurate, given the consistent repeatability of the tested workpieces [Agha and Liu, 2000]. The difference in the nature of residual stresses produced by grinding and hard turning is used to show why the inclusion of the maximum modified equivalent stress, its location and the volume at risk, improves the power of the model to predict the rolling contact fatigue lives of the hard turned surfaces. This model is the best up to date for predicting the fatigue life of a surface, especially when residual stress is a factor.


1982 ◽  
Vol 104 (3) ◽  
pp. 330-334 ◽  
Author(s):  
A. H. Nahm

Accelerated rolling contact fatigue tests were conducted to study the effect of grain flow orientation on the rolling contact fatigue life of vacuum induction melted and vacuum arc remelted (VIM-VAR) AISI M-50. Cylindrical test bars were prepared from a billet with 0, 45, and 90 deg orientations relative to billet forging flow direction. Tests were run at a Hertzian stress of 4,826 MPa with a rolling speed of 12,500 rpm at room temperature, and lubricated with Type I (MIL-L-7808G) oil. It was observed that rolling contact fatigue life increased when grain flow line direction became more parallel to the rolling contact surface.


Author(s):  
John W. Lucek

Rolling-contact fatigue test methods were used to measure the wear performance of several silicon nitride materials. Sintered, hot pressed and hot isostatically pressed materials exhibited wear rates ranging over three orders of magnitude. Hot isostatically pressed materials had the lowest wear rates. Despite the disparity in wear performance, all materials tested had useful rolling-contact fatigue lives compared to steel. Fatigue life estimates, failure modes, and rolling wear performance for theses ceramics are compared to M-50 steel. This work highlights the rapid contact stress reductions that occur due to conformal wear in rolling-contact fatigue testing. Candidate bearing materials with unacceptably high wear rates may exhibit useful fatigue lives. Rolling contact bearing materials must possess useful wear and fatigue resistance. Proper performance screening of candidate bearing materials must describe the failure mode, wear rate, and the fatigue life. Guidelines for fatigue testing methods are proposed.


Sign in / Sign up

Export Citation Format

Share Document