Development of a Driving Cycle for Amman City With Performance Evaluation for ICE Vehicle

Author(s):  
M. Abu Mallouh ◽  
B. W. Surgenor ◽  
E. Abdelhafez ◽  
M. Salah ◽  
M. Hamdan

A good driving cycle is needed for accurate evaluation of a vehicle’s performance in terms of emission and fuel consumption. Driving cycles obtained for certain cities or countries are not usually applicable to other cities or countries. Therefore, considerable research has been conducted on developing driving cycles for certain cities and regions. In this paper, a driving cycle for a taxi in Amman city, the capital of Jordan, is developed. Significant differences are noted when comparing the Amman driving cycle with other driving cycles. A model of a gasoline powered vehicle is used to conduct a performance comparison in terms of fuel economy and emissions utilizing the developed Amman driving cycle and six other worldwide driving cycles. The developed Amman driving cycle is very useful in obtaining accurate estimation of fuel economy and emissions for vehicles running on Amman roads and will be used in future work to study the performance of hybrid fuel cell/ battery vehicles.

Author(s):  
Masilamani Sithananthan ◽  
Ravindra Kumar

This paper proposed a framework for development of real-world driving cycle in India after a thorough review and comparison of motorcycle driving cycles used in different countries. A limited state-of-the art work for the development of driving cycles for motorcycles is available. The motorcycle driving cycles developed by different countries differ from each other in terms of their driving cycle characteristics, emission factors, and fuel economy. This paper reviewed the parameters of real-world driving cycles of motorcycles and compares the same with legislative cycles concerning their characteristics and emissions. The parameters of real-world driving cycles and Indian legislative cycle (IDC) deviate significantly from other legislative cycles in the range of −97% to +1172% and −74% to 284% respectively. The emission factors of the legislative cycle do not match with the realistic emissions measured by real-world driving cycles. This is due to the reason that the legislative cycles do not represent the current traffic scenario and hence need to be revised. A framework is proposed to develop a real-world driving cycle in India.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Hai Xu ◽  
Avinash Singh ◽  
Ahmet Kahraman ◽  
Joshua Hurley ◽  
Sam Shon

In order to boost the fuel economy of their vehicles, automotive Original Equipment Manufacturers (OEMs) and suppliers have been investigating a range of options from alternate vehicle propulsion systems down to optimized component level technologies. The hypoid gear set in a rear axle is one of the least efficient drive train components, and as such, provides unique opportunities for improvements. It has therefore attracted significant attention from researchers to reduce the power losses. Both loaded and unloaded power losses have been studied before and found to vary significantly with load and speed conditions. This paper will focus on the effects of the axle pinion bearing preload, axle gear oil levels, and operating temperatures on axle power losses during the fuel economy driving cycles where both axle load and speed vary significantly. In this paper, power loss measurements from experiments conducted on an automotive rear drive axle on a dedicated dynamometer will be presented. Tests were conducted under a range of speed and load conditions that were developed from Environmental Protection Agency (EPA) fuel economy driving cycles. Both urban and highway cycles were included in the tests. Separate tests were conducted for unloaded spin losses and loaded power losses. The tests were conducted at a few different controlled levels of gear oil operating temperatures, gear oil volumes, and pinion bearing preloads, and their influence on power losses was quantified. The measured power losses at a matrix of load and speed conditions provide a series of power loss maps as a function of gear oil operating temperature, oil volume, and bearing preload. Using these power loss maps, the overall axle efficiency or power loss during any driving cycle can be quantified by integrating the instantaneous power losses as the axle goes through the driving cycles. Similar maps can be created for other influences and the proposed procedure can be utilized to quantify their influences on a given driving cycle. Results from this study indicate that with the combination of appropriate preloads, gear oil volume, and temperature control, axle efficiency can potentially be improved by roughly 3% in the tested axle.


2021 ◽  
Author(s):  
Tian Sun ◽  
Guang Chen ◽  
Hao Lan ◽  
Jianqiang Guo ◽  
Xiaobing Wang ◽  
...  

Author(s):  
Hai Xu ◽  
Avinash Singh ◽  
Ahmet Kahraman ◽  
Joshua Hurley ◽  
Sam Shon

In order to boost the fuel economy of their vehicles, automotive OEMs and suppliers have been investigating a range of options from alternate vehicle propulsion systems down to optimized component level technologies. A rear axle differential with a hypoid gear set is one of the least efficient drive train components, and as such, provides unique opportunities for improvements. It has therefore attracted significant attention from researchers to reduce the power losses. Both loaded and unload power losses have been studied before and found to vary significantly with load and speed conditions. This paper will focus on the effects of the axle pinion bearing preload, axle gear oil levels and operating temperatures on axle power losses during the fuel economy driving cycles where both axle load and speed vary significantly. In this paper, power loss measurements from experiments conducted on an automotive rear drive axle on a dedicated dynamometer will be presented. Tests were conducted under a range of speed and load conditions that were developed from EPA fuel economy driving cycles. Both urban and highway cycles were included in the tests. Separate tests were conducted for unloaded spin losses and loaded power losses. The tests were conducted at a few different controlled levels of gear oil operating temperatures, gear oil volumes and pinion bearing preloads, and their influence on power losses were quantified. The measured power losses, at a matrix of load and speed conditions provide a series of power loss maps as a function of gear oil operating temperature, oil volume, and bearing preload. Using these power loss maps, the overall axle efficiency or power loss during any driving cycle can be quantified by integrating the instantaneous power losses as the axle goes through the driving cycles. Similar maps can be created for other influences and the proposed procedure can be utilized to quantify their influences on a given driving cycle. Results from this study indicate that with the combination of appropriate preloads, gear oil volume and temperature control, axle efficiency can potentially be improved by roughly 3% in the tested axle.


Author(s):  
Ivan Arsie ◽  
Alfonso Di Domenico ◽  
Cesare Pianese ◽  
Marco Sorrentino

The paper focuses on the development of a dynamic model for a hybrid vehicle equipped with a PEM fuel cell and a battery pack. An integrated structure of mathematical models has been implemented, whose development is based on previous studies carried out by the research group on the modeling of energy conversion systems for conventional and hybrid vehicles. The whole model simulates real driving cycles aiming at providing the data needed for selecting the best control strategies in terms of performance and fuel economy. A comparison with thermal-hybrid vehicles and conventional systems performance is presented together with an energy analysis carried out for both the single stack and its auxiliaries and the overall system (vehicle).


2020 ◽  
Vol 11 (1) ◽  
pp. 19 ◽  
Author(s):  
Zhicheng Sun ◽  
Zui Wen ◽  
Xin Zhao ◽  
Yunpeng Yang ◽  
Su Li

Electric vehicles (EVs) include battery electric vehicles (BEVs), fuel-cell vehicles (FCVs) and fuel-cell hybrid electric vehicles (FCHEVs). The performance of vehicles is usually evaluated using standardized driving cycle tests; however, the results from standardized driving cycle tests deviate from the real-world driving cycle. In order to test the adaptability of EVs to real-world driving cycles, conditions of three typical routes in Tianjin are collected and their characteristics analyzed; then BEV and FCV models are created based on a type of FCHEV to simulate 0–100 km/h acceleration and cruising performance under a real-world driving cycle; finally, a motor bench is used to test the performance of FCHEV under the NEDC (New European Driving Cycle). After the adaptability of the three models to real-world driving cycle is compared based on the simulation and test results, it is found that FCHEV can recycle braking energy and has quick dynamic response, which can be well adapted to the real-world driving cycle.


2018 ◽  
Vol 7 (4.19) ◽  
pp. 939
Author(s):  
Haider S. Najem ◽  
Qahtan A. Jawad ◽  
Abdulbaki K. Ali ◽  
Basil S. Munahi

In this paper, a statistical method is employed to develop a driving cycle for Basrah city and to find out the factor score and the Euclidean distance analysis by the Statistical Package for the Social Sciences (SPSS). A simple electronic system is built to construct the driving cycle, the system considered a microcontroller and a GPS sensor connected to a PC through a simple C++ code. The development of the proposed driving cycle represents the first model driving cycle in the city of Basra. The advisor software package is used to investigate the economic performance of the internal combustion engine based on HC, CO, and NOx exhaust emissions. It was found that the obtained driving cycle is significantly different than the other driving cycles in terms of exhaust emissions and fuel consumption and within the expected range of emissions. The developed driving cycle model obtained is a representative delicate estimation of the exhaust emissions and fuel consumption, and will be utilized for future work to obtain a good performance of the hybrid electric vehicles.  


Sign in / Sign up

Export Citation Format

Share Document