Highly Transient High Speed Jet Flow From Different Orifice Geometries

2021 ◽  
Author(s):  
Nicholas Findanis

Abstract The majority of the many types of different industrial flows are not in the laminar flow regime, but rather these flows are well beyond laminar and continue to exceed the turbulent flow transition criterion for internal and free shear flows to be fully turbulent and highly unsteady involving the transfer of fluid through circular conduits or round pipes as well as other conduit geometries including the issuing of jet flows into some type of ambient environment. High speed jet flows have a wide range of applications in many areas of engineering. The understanding of jet flow theory has progressed substantially. However, there is a very little investigation into the transient nature of the high-speed jet flows and how the structure of these jet flows differs according to the geometry of the orifice out of which the jet flow emanates. The transient nature of these jet flows allows the applications into which they are installed to be optimized according to the characteristics of the jet flow and the configuration of the system. The focus of the present work is to characterize transient high speed jet flows from the differing orifice nozzle geometries and the introduction of a swirling motion into the jet flow and how this affects the characteristics of the jet flow from the reference jet flow that is free from swirling motion momentum. Another important but niche or specialised jet flow application is in reverse pulse-jet (RPJ) cleaning systems, of which is the focus application of the present work. A typical RPJ cleaning system consists of three main components: compressed air supply, valve and blowtube. The blowtube is the name given to the pipe connected to the valve and configured with a number of outlets or orifices where the flow exits into a plenum thereby entraining and inducting flow into a filter that is aligned with the orifice from which the jet flow issues. In the present work, improvements are sought from the blowtube or more specifically the exit pipe orifices for a more efficient operation of a well-designed cleaning system. The present paper will discuss and compare the flow through a number of different orifice geometries for the type flow that is typically experienced in this type of application. The operation of a single event or an actuation of the pulse-jet valve, is extremely rapid; typically approximately 300 ms. The valve is actuated and the diaphragm moves and allows the compressed air to travel from the pressure vessel or header tank through the valve past the valve seat into the blowtube and exits through plain orifices or nozzles. The extremely rapid event generates highly transient, highly turbulent free shear jet type flow from either the plain orifice or nozzle with a circular orifice geometry through which the flow exits. Advancements made by the author in subsonic flows and high-speed gas dynamic flows could provide not only improvements to the flow but further insight to the physics of high speed flows in particular around pipe exit orifices. This investigative study of the jet flow was based upon a computational analysis. It was shown that the base reference case of the jet flow that was solely a non-swirling flow although the jet flow was highly transient in nature that the centreline velocity of the jet flow had variability from the inner core to the outer extremities of the jet flow. The comparison of the base reference case with swirling jet flow will produce a longer coherent jet flow using the different orifice geometries. The stability of the jet flow was improved with the introduction of the swirling motion to the jet flow. Future developments of the transient nature of the jet flow will include experimental studies to verify the flow control methods that were used in the swirling jet flow cases.

Author(s):  
Nicholas Findanis

Abstract The majority of the many types of different industrial flows are not in the laminar flow regime, but rather these flows are well beyond laminar and continue to exceed the turbulent flow transition criterion for internal and free shear flows to be fully turbulent and highly unsteady involving the transfer of fluid through circular conduits or round pipes as well as other conduit geometries including the issuing of jet flows into some type of ambient environment. High speed jet flows have a wide range of applications in many areas of engineering. The understanding of jet flow theory has progressed substantially. However, there is a very little investigation into the transient nature of the high-speed jet flows and how the structure of these jet flows differs according to the geometry of the orifice out of which the jet flow emanates. The transient nature of these jet flows allows the applications into which they are installed to be optimized according to the characteristics of the jet flow and the configuration of the system. The focus of the present work is to characterize transient high speed jet flows from the differing orifice nozzle geometries and the introduction of a swirling motion into the jet flow and how this affects the characteristics of the jet flow from the reference jet flow that is free from swirling motion momentum. Another important but niche or specialised jet flow application is in reverse pulse-jet (RPJ) cleaning systems, of which is the focus application of the present work. A typical RPJ cleaning system consists of three main components: compressed air supply, valve and blowtube. The blowtube is the name given to the pipe connected to the valve and configured with a number of outlets or orifices where the flow exits into a plenum thereby entraining and inducting flow into a filter that is aligned with the orifice from which the jet flow issues. In the present work, improvements are sought from the blowtube or more specifically the exit pipe orifices for a more efficient operation of a well-designed cleaning system. The present paper will discuss and compare the flow through a number of different orifice geometries for the type flow that is typically experienced in this type of application. The operation of a single event or an actuation of the pulse-jet valve, is extremely rapid; typically approximately 300 ms. The valve is actuated and the diaphragm moves and allows the compressed air to travel from the pressure vessel or header tank through the valve past the valve seat into the blowtube and exits through plain orifices or nozzles. The extremely rapid event generates highly transient, highly turbulent free shear jet type flow from either the plain orifice or nozzle with a circular orifice geometry through which the flow exits. Advancements made by the author in subsonic flows and high-speed gas dynamic flows could provide not only improvements to the flow but further insight to the physics of high speed flows in particular around pipe exit orifices. This investigative study of the jet flow was based upon a computational analysis. It was shown that the base reference case of the jet flow that was solely a non-swirling flow although the jet flow was highly transient in nature that the centreline velocity of the jet flow had variability from the inner core to the outer extremities of the jet flow. The comparison of the base reference case with swirling jet flow will produce a longer coherent jet flow using the different orifice geometries. The stability of the jet flow was improved with the introduction of the swirling motion to the jet flow. Future developments of the transient nature of the jet flow will include experimental studies to verify the flow control methods that were used in the swirling jet flow cases.


Author(s):  
Leping Zhou ◽  
Yuanyuan Li ◽  
Longting Wei ◽  
Xiaoze Du

Jet flow phenomenon is important in enhanced nucleate boiling heat transfer processes and applications. When heater sizes scale down, jet flow can be observed due to the Marangoni convection around bubbles staying on microscale heated surface. In this paper, two fluids were employed for comparing and demonstrating the effect of Marangoni convection on bubble behaviors on micro heating wire. One was ultrapure water and the other was aqueous n-butanol solution, a self-rewetting fluid. Bubble-top jet flow for water and multi-jet flows for n-butanol solution were observed around a platinum micro heating wire by high speed CCD camera. Corresponding numerical simulation proved that it is the Marangoni convection that attracts the sub-cooled water to flow from the super-heated microlayer at the bottom to the top of a stationary bubble. For n-butanol solution, however, the Marangoni convection can induce it to flow oppositely, which causes the subcooled solution to flow onto the heated surface. The simulation for the solution is in good agreement with the experiment where the subcooled liquid nears the bubble-top flow towards the bottom of bubble or the heated surface and hence the multi-jet flows occur. The multi-jet flows can sustain for a long period and cause transient chaos at the super-heated thin liquid layer near the heated surface. The temperature around the bubble presented sharp temperature gradient and the velocity in the near-wall region is almost vertical to the wall. The experimental and numerical studies on the effect of surface tension and thus Marangoni convection are crucial to the mechanisms of subcooled nucleate boiling of fluids.


2021 ◽  
pp. 146808742110072
Author(s):  
Karri Keskinen ◽  
Walter Vera-Tudela ◽  
Yuri M Wright ◽  
Konstantinos Boulouchos

Combustion chamber wall heat transfer is a major contributor to efficiency losses in diesel engines. In this context, thermal swing materials (adapting to the surrounding gas temperature) have been pinpointed as a promising mitigative solution. In this study, experiments are carried out in a high-pressure/high-temperature vessel to (a) characterise the wall heat transfer process ensuing from wall impingement of a combusting fuel spray, and (b) evaluate insulative improvements provided by a coating that promotes thermal swing. The baseline experimental condition resembles that of Spray A from the Engine Combustion Network, while additional variations are generated by modifying the ambient temperature as well as the injection pressure and duration. Wall heat transfer and wall temperature measurements are time-resolved and accompanied by concurrent high-speed imaging of natural luminosity. An investigation with an uncoated wall is carried out with several sensor locations around the stagnation point, elucidating sensor-to-sensor variability and setup symmetry. Surface heat flux follows three phases: (i) an initial peak, (ii) a slightly lower plateau dependent on the injection duration, and (iii) a slow decline. In addition to the uncoated reference case, the investigation involves a coating made of porous zirconia, an established thermal swing material. With a coated setup, the projection of surface quantities (heat flux and temperature) from the immersed measurement location requires additional numerical analysis of conjugate heat transfer. Starting from the traces measured beneath the coating, the surface quantities are obtained by solving a one-dimensional inverse heat transfer problem. The present measurements are complemented by CFD simulations supplemented with recent rough-wall models. The surface roughness of the coated specimen is indicated to have a significant impact on the wall heat flux, offsetting the expected benefit from the thermal swing material.


2012 ◽  
Vol 576 ◽  
pp. 41-45
Author(s):  
A.K.M. Nurul Amin ◽  
M.A. Mahmud ◽  
M.D. Arif

The majority of semiconductor devices are made up of silicon wafers. Manufacturing of high-quality silicon wafers includes numerous machining processes, including end milling. In order to end mill silicon to a nano-meteric surface finish, it is crucial to determine the effect of machining parameters, which influence the machining transition from brittle to ductile mode. Thus, this paper presents a novel experimental technique to study the effects of machining parameters in high speed end milling of silicon. The application of compressed air, in order to blow away the chips formed, is also investigated. The machining parameters’ ranges which facilitate the transition from brittle to ductile mode cutting as well as enable the attainment of high quality surface finish and integrity are identified. Mathematical model of the response parameter, the average surface roughness (Ra) is subsequently developed using RSM in terms of the machining parameters. The model was determined, by Analysis of Variance (ANOVA), to have a confidence level of 95%. The experimental results show that the developed mathematical model can effectively describe the performance indicators within the controlled limits of the factors that are being considered.


Author(s):  
Adam de Belder ◽  
Martyn Thomas

Since 1979, plain old balloon angioplasty (POBA) has provided relief of angina for many patients. Recurrent symptoms due to restenosis diminished with bare-metal stent and, more recently, drug-eluting technology. A limitation to achieving good results with POBA and stenting is calcification within the artery which not only can prevent passage of balloons and stents into a lesion but also may prevent adequate lumen expansion. Rotational atherectomy or rotablation (RA) can treat highly resistant calcified plaque within coronary arteries to allow adequate vessel expansion and ensure optimal stent deployment. The concept of using a high-speed diamond-tipped drill spinning at 150 000rpm driven by compressed air to clear an artery that is 3mm in diameter is challenging, yet this technique has been available for use in coronary arteries since 1989 when M.E. Bertrand (Lille, France) and R. Erbel (Essen, Germany) first used it in humans.


2020 ◽  
Vol 10 (14) ◽  
pp. 4993
Author(s):  
Igor Korobiichuk ◽  
Viktorij Mel’nick ◽  
Volodimir Karachun

The carried-out analysis of the dynamics of a submarine body’s translational motion affected by an acoustic shock in the ideal medium provides for the possibility to evaluate the physical properties of the medium and elastic properties of the external body of the submarine to the value of limited motion of a submersible vehicle. The results of analysis provide for the possibility to conduct a comparative analysis of the submersible vehicle’s translational motion affected by an acoustic shock, taking into account the peculiarities of the motion medium, or rather taking into account the viscosity of the real medium. In this work, evaluative measurements of the features of moving the layout of the submarine were carried out. The limiting values of the displacement of the layout of the submarine are established for the case of the presence of an external artificial diffuse disturbance. A fluid with air bubbles from a compressed air cylinder was used to create an artificial diffuse perturbation. Such conditions are possible with intensive local bombardment or the presence of other high-speed underwater vehicles involved in local underwater operations.


2019 ◽  
Vol 70 (11) ◽  
pp. 566-570
Author(s):  
Yohei SUZUKI ◽  
Yasushi UMEDA ◽  
Toshinosuke AKUTSU ◽  
Christpher E. J. Cordonier ◽  
Hideo HONMA ◽  
...  

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
C. Chin ◽  
M. Li ◽  
C. Harkin ◽  
T. Rochwerger ◽  
L. Chan ◽  
...  

A numerical study of compressible jet flows is carried out using Reynolds averaged Navier–Stokes (RANS) turbulence models such as k-ɛ and k-ω-SST. An experimental investigation is performed concurrently using high-speed optical methods such as Schlieren photography and shadowgraphy. Numerical and experimental studies are carried out for the compressible impinging at various impinging angles and nozzle-to-wall distances. The results from both investigations converge remarkably well and agree with experimental data from the open literature. From the flow visualizations of the velocity fields, the RANS simulations accurately model the shock structures within the core jet region. The first shock cell is found to be constraint due to the interaction with the bow-shock structure for nozzle-to-wall distance less than 1.5 nozzle diameter. The results from the current study show that the RANS models utilized are suitable to simulate compressible free jets and impinging jet flows with varying impinging angles.


Sign in / Sign up

Export Citation Format

Share Document