Effect of Showerhead Injection on Superposition of Multi-Row Pressure Side Film Cooling With Fan Shaped Holes

Author(s):  
Martin Schneider ◽  
Sacha Parneix ◽  
Jens von Wolfersdorf

In the present study the effect of approach boundary layer conditions on film cooling effectiveness superposition for pressure side fan shaped holes on a first stage vane is investigated. More particularly, the effect of showerhead cooling on the film effectiveness of downstream pressure side rows is addressed. The experimental test facility used is a continuously running , two passage, linear cascade wind tunnel equipped with a central vane and contoured side walls. Main stream stagnation conditions and pressure measurements on the vane external surface were taken to determine the isentropic Mach number distribution. The turbulence level generated with a bar grid is around 15%. Film cooling effectiveness has been determined with the narrow banded thermochromic liquid crystal steady state technique. Mainstream as well as coolant flow could be heated to shift the iso-temperature contours across the vane. Carbon dioxide was used as coolant gas to better match the density ratio in the experimental facility to engine conditions. The test model is a research vane equipped with four rows of cylindrical holes showerhead and three rows of fan shaped holes along the pressure side at typical inclination angles to the surface. The study incorporates single row blowing with the following row approach conditions: 1) no showerhead injection, 2) boundary layer trip, 3) isothermal showerhead blowing, and multi-row blowing with and without showerhead blowing. The results are used to investigate the applicability of the single row results superposition approach for multiple-row injection. Simulating the appropriate aerodynamic conditions during individual row measurements improves the superposition prediction in comparison to the multi-row results.

Author(s):  
Frederick A. Buck ◽  
Chander Prakash

A single passage test model has been designed to simulate the mainstream aerodynamics between two adjacent turbine airfoils and to measure the film cooling effectiveness from coolant injection on the pressure and suction sides of the airfoils. Film cooling tests were run on the model using a gas concentration/mass transfer technique with a foreign gas as the coolant to match density ratio. Aspects of the design and test are discussed including the use of a two-dimensional inviscid flow analysis to design boundary layer bleeds upstream of the pressure- and suction-side airfoil surfaces. Results of two- and three-dimensional viscous flow analyses that were used to evaluate various design features including inlet bellmouth, boundary layer bleeds, adjustable tailboards and model backpressure are presented. Aerodynamic and film cooling effectiveness test measurements made with the model will show that the model flow field can be controlled to match results from a previous thermal cascade test.


2004 ◽  
Vol 10 (5) ◽  
pp. 345-354 ◽  
Author(s):  
Jan Dittmar ◽  
Achmed Schulz ◽  
Sigmar Wittig

The demand of improved thermal efficiency and high power output of modern gas turbine engines leads to extremely high turbine inlet temperature and pressure ratios. Sophisticated cooling schemes including film cooling are widely used to protect the vanes and blades of the first stages from failure and to achieve high component lifetimes. In film cooling applications, injection from discrete holes is commonly used to generate a coolant film on the blade's surface.In the present experimental study, the film cooling performance in terms of the adiabatic film cooling effectiveness and the heat transfer coefficient of two different injection configurations are investigated. Measurements have been made using a single row of fanshaped holes and a double row of cylindrical holes in staggered arrangement. A scaled test model was designed in order to simulate a realistic distribution of Reynolds number and acceleration parameter along the pressure side surface of an actual turbine guide vane. An infrared thermography measurement system is used to determine highly resolved distribution of the models surface temperature. Anin-situcalibration procedure is applied using single embedded thermocouples inside the measuring plate in order to acquire accurate local temperature data.All holes are inclined 35° with respect to the model's surface and are oriented in a streamwise direction with no compound angle applied. During the measurements, the influence of blowing ratio and mainstream turbulence level on the adiabatic film cooling effectiveness and heat transfer coefficient is investigated for both of the injection configurations.


2021 ◽  
Author(s):  
Izhar Ullah ◽  
Sulaiman M. Alsaleem ◽  
Lesley M. Wright ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This work is an experimental study of film cooling effectiveness on a blade tip in a stationary, linear cascade. The cascade is mounted in a blowdown facility with controlled inlet and exit Mach numbers of 0.29 and 0.75, respectively. The free stream turbulence intensity is measured to be 13.5 % upstream of the blade’s leading edge. A flat tip design is studied, having a tip gap of 1.6%. The blade tip is designed to have 15 shaped film cooling holes along the near-tip pressure side (PS) surface. Fifteen vertical film cooling holes are placed on the tip near the pressure side. The cooling holes are divided into a 2-zone plenum to locally maintain the desired blowing ratios based on the external pressure field. Two coolant injection scenarios are considered by injecting coolant through the tip holes only and both tip and PS surface holes together. The blowing ratio (M) and density ratio (DR) effects are studied by testing at blowing ratios of 0.5, 1.0, and 1.5 and three density ratios of 1.0, 1.5, and 2.0. Three different foreign gases are used to create density ratio effect. Over-tip flow leakage is also studied by measuring the static pressure distributions on the blade tip using the pressure sensitive paint (PSP) measurement technique. In addition, detailed film cooling effectiveness is acquired to quantify the parametric effect of blowing ratio and density ratio on a plane tip design. Increasing the blowing ratio and density ratio resulted in increased film cooling effectiveness at all injection scenarios. Injecting coolant on the PS and the tip surface also resulted in reduced leakage over the tip. The conclusions from this study will provide the gas turbine designer with additional insight on controlling different parameters and strategically placing the holes during the design process.


Author(s):  
Mohamed Qenawy ◽  
Wenwu Zhou ◽  
Han Chen ◽  
Hongyi Shao ◽  
Di Peng ◽  
...  

Abstract The adiabatic film cooling effectiveness behind a single row of circular holes fed by internal crossflow was measured by fast-response pressure-sensitive paint technique. During the experiment, the coolant flow was discharged from the coolant holes via either plenum or crossflow channel. The test model has a row of circular holes with 3D spacing, 6.5D entry length, and 35° inclination angle. Two blowing ratios (M = 0.40 and 0.80) were tested with a density ratio of 0.97. A numerical steady-state RANS simulation, using SST k-ω and Realizable k-ε turbulence models, was conducted to understand the internal crossflow behaviors. The unsteadiness caused by the flow structures (counter-rotating vortex pair (CRVP) and horseshoe vortex) was quantified by the root mean square and the cross-correlations. In addition, the proper orthogonal decomposition was used to identify the large-scale unsteady coherent structures and their contributions. The fluctuations of the crossflow feed were asymmetric, which were significantly weaker compared with the plenum case. The CRVP, as the most significant coherent structures, were demonstrated to play the main role in the unsteadiness of the crossflow feed.


Author(s):  
Donald L. Schmidt ◽  
Basav Sen ◽  
David G. Bogard

Film cooling effectiveness was studied experimentally in a flat plate test facility with zero pressure gradient using a single row of inclined holes which injected high density, cryogenically cooled air. Round holes and holes with a diffusing expanded exit were directed laterally away from the freestream direction with a compound angle of 60°. Comparisons were made with a baseline case of round holes aligned with the freestream. The effects of doubling the hole spacing to six hole diameters for each geometry were also examined. Experiments were performed at a density ratio of 1.6 with a range of blowing ratios from 0.5 to 2.5 and momentum flux ratios from 0.16 to 3.9. Lateral distributions of adiabatic effectiveness results were determined at streamwise distances from 3 D to 15 D downstream of the injection holes. All hole geometries had similar maximum spatially averaged effectiveness at a low momentum flux ratio of I = 0.25, but the round and expanded exit holes with compound angle had significantly greater effectiveness at larger momentum flux ratios. The compound angle holes with expanded exits had a much improved lateral distribution of coolant near the hole for all momentum flux ratios.


Author(s):  
Lesley M. Wright ◽  
Evan L. Martin

Detailed film cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The effects of average blowing ratio (M = 0.25–1.0) and coolant – to – mainstream density ratio (DR = 1.0–1.4) are evaluated in a low speed wind tunnel with a freestream velocity of 8.5 m/s and a freestream turbulence intensity of 6.8%. The coolant – to – mainstream density ratio is varied by using either nitrogen (DR = 1.0) or argon (DR = 1.4) as the coolant gases. The double hole geometry consists of a row of simple angle (θ = 35°), cylindrical holes coupled with one row of compound angle holes (θ = 45°, β = 50°). With the selected geometry, the compound holes effectively weaken the counter rotating vortex pair formed within the traditional simple angle hole. Therefore, the surface film cooling effectiveness is increased compared to a single row of simple angle film cooling holes. While increasing the blowing ratio decreases the film cooling effectiveness, the severity of the film cooling effectiveness reduction is less than with the single row of holes.


2014 ◽  
Vol 521 ◽  
pp. 104-107
Author(s):  
Ling Zhang ◽  
Quan Heng Jin ◽  
Da Fei Guo

The Realizable k-ε turbulence model was performed to investigate the film cooling effectiveness with different blowing ratio 1,1.5,2 and different density ratio 1,1.5,2.The results show that, cooling effectiveness increases with the augment of blowing ratio. On the pressure side, cooling effectiveness increases with the augment of density ratio. On the suction side, with higher density ratio the leading edge cooling increases, the middle section reduces, and the trailing edge cooling effectiveness increases first decreases.


Author(s):  
Marc D. Polanka ◽  
Virginia C. Witteveld ◽  
David G. Bogard

An experimental program to study film cooling adiabatic effectiveness in the showerhead region of a turbine vane was completed. A typical first stage turbine stator vane was modeled in a nine-times scale, low speed test facility. The leading edge showerhead consisted of a row of holes at the stagnation point of the vane as well as two rows on the pressure surface and three rows on the suction surface. Film cooling performance on the pressure side of the showerhead is described in this paper. Experiments were conducted for a number of blowing ratios, from 0.3 to 2.9, and at a density ratio of nominally 1.8. The impact of high mainstream turbulence was studied by comparing performance at turbulence levels of 0.5% and 22%. The sensitivity to the stagnation line position was also investigated. The approaching stagnation line was positioned either directly on the stagnation row of holes or just to the suction side of that row. With the stagnation line directly on the stagnation row of holes at low turbulence, the direction of the coolant jets was observed to vary along the span of the airfoil. At high turbulence, this same effect did not occur. Moreover, at the high mainstream turbulence level, the coolant from the entire stagnation row of holes seemed to be spread more evenly throughout the stagnation region. At high blowing ratios, this resulted in higher effectiveness values in the stagnation region. Farther downstream, the high mainstream turbulence reduced the effectiveness at all blowing ratios.


Author(s):  
Jeffrey P. Bons ◽  
Charles D. MacArthur ◽  
Richard B. Rivir

This study investigated the adiabatic wall cooling effectiveness of a single row of film cooling boles injecting into a turbulent flat plate boundary layer below a turbulent, zero pressure gradient freestream. Levels of freestream turbulence (Tu) up to 17.4% were generated using a method which simulates conditions at a gas turbine combustor exit. Film cooling was injected from a single row of five 35 degree slant-hole injectors (length/diameter = 3.5. pitch/diameter = 3.0) at blowing ratios from 0.55 to 1.85 and at a nearly constant density ratio (coolant density/freestream density) of 0.95. Film cooling effectiveness data is presented for Tu levels ranging from 0.9% to 17% at a constant freestream Reynolds number based on injection hole diameter of 19000. Results show that elevated levels of freestream turbulence reduce film cooling effectiveness by up to 70% in the region directly downstream of the injection hole due to enhanced mixing. At the same time, high freestream turbulence also produces a 50–100% increase in film cooling effectiveness in the region between injection boles. This is due to accelerated spanwise diffusion of the cooling fluid, which also produces an earlier merger of the coolant jets from adjacent holes.


Sign in / Sign up

Export Citation Format

Share Document