NOx Emissions Reduction in an Innovative Industrial Gas Turbine Combustor (GE10 Machine): A Numerical Study of the Benefits of a New Pilot-System on Flame Structure and Emissions

Author(s):  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Mangani ◽  
Antonio Asti ◽  
Gianni Ceccherini ◽  
...  

One of the driving requirements in gas turbine design is emissions reduction. In the mature markets (especially the North America), permits to install new gas turbines are granted provided emissions meet more and more restrictive requirements, in a wide range of ambient temperatures and loads. To meet such requirements, design techniques have to take advantage also of the most recent CFD tools. As a successful example of this, this paper reports the results of a reactive 3D numerical study of a single-can combustor for the GE10 machine, recently updated by GE-Energy. This work aims to evaluate the benefits on the flame shape and on NOx emissions of a new pilot-system located on the upper part of the liner. The former GE10 combustor is equipped with fuel-injecting-holes realizing purely diffusive pilot-flames. To reduce NOx emissions from the current 25 ppmvd@15%O2 to less than 15 ppmvd@15%O2 (in the ambient temperature range from −28.9°C to +37.8°C and in the load range from 50% and 100%), the new version of the combustor is equipped with 4 swirler-burners realizing lean-premixed pilot flames; these flames in turn are stabilized by a minimal amount of lean-diffusive sub-pilot-fuel. The overall goal of this new configuration is the reduction of the fraction of fuel burnt in diffusive flames, lowering peak temperatures and therefore NOx emissions. To analyse the new flame structure and to check the emissions reduction, a reactive RANS study was performed using STAR-CD™ package. A user-defined combustion model was used, while to estimate NOx emissions a specific scheme was also developed. Three different ambient temperatures (ISO, −28.9°C and 37.8°C) were simulated. Results were then compared with experimental measurements (taken both from the engine and from the rig), resulting in reasonable agreement. Finally, an additional simulation with an advanced combustion model, based on the laminar flamelet approach, was performed. The model is based on the G-Equation scheme but was modified to study partially premixed flames. A geometric procedure to solve G-Equation was implemented as add-on in STAR-CD™.

Author(s):  
A. Haj Ayed ◽  
K. Kusterer ◽  
H. H.-W. Funke ◽  
J. Keinz ◽  
M. Kazari ◽  
...  

Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) hydrogen combustion. Thus, the development of DLN hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel is being developed since years to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. For the low NOx Micromix hydrogen application the paper presents a numerical study showing the further potential to reduce the number of hydrogen injectors by increasing the hydrogen injector diameter significantly by more than 350% resulting in an enlarged diffusion-type flame size. Experimental data is compared to numerical results for one configuration with increased hydrogen injector size and two different aerodynamic flame stabilization design laws. The applied design law for aerodynamic stabilization of the miniaturized flamelets is scaled according to the hydrogen injector size while maintaining equal thermal energy output and significantly low NOx emissions. Based on this parameter variation study the impact of different geometric parameters on flow field, flame structure and NOx formation is investigated by the numerical study. The numerical results show that the low NOx emission characteristics and the Micromix flame structure are maintained at larger hydrogen injector size and reveal even further potential for energy density increase and a reduction of combustor complexity and production costs.


Author(s):  
G. E. Parker

Controls for small lightweight gas turbines present some unique design problems. The requirements for small size, light weight, ability to rotate at high speeds to save reduction gearing, and low production cost conflict with the requirements for reasonably accurate control of very small fuel flows and the scheduling of a wide range of hydrocarbon fuels over a wide range of ambient temperatures. This paper discusses in some detail the design of such a control and the satisfactory results obtained.


Author(s):  
Felipe Bolaños ◽  
Dieter Winkler ◽  
Felipe Piringer ◽  
Timothy Griffin ◽  
Rolf Bombach ◽  
...  

The combustion of hydrogen-rich fuels (> 80 % vol. H2), relevant for gas turbine cycles with “pre-combustion” carbon capture, creates great challenges in the application of standard lean premix combustion technology. The significant higher flame speed and drastically reduced auto-ignition delay time of hydrogen compared to those of natural gas, which is normally burned in gas turbines, increase the risk of higher NOX emissions and material damage due to flashback. Combustion concepts for gas turbines operating on hydrogen fuel need to be adapted to assure safe and low-emission combustion. A rich/lean (R/L) combustion concept with integrated heat transfer that addresses the challenges of hydrogen combustion has been investigated. A sub-scale, staged burner with full optical access has been designed and tested at gas turbine relevant conditions (flame temperature of 1750 K, preheat temperature of 400 °C and a pressure of 8 bar). Results of the burner tests have confirmed the capability of the rich/lean staged concept to reduce the NOx emissions for undiluted hydrogen fuel. The NOx emissions were reduced from 165 ppm measured without staging (fuel pre-conversion) to 23 ppm for an R/L design having a fuel-rich hydrogen pre-conversion of 50 % at a constant power of 8.7 kW. In the realized R/L concept the products of the first rich stage, which is ignited by a Pt/Pd catalyst (under a laminar flow, Re ≈ 1900) are combusted in a diffusion-flame-like lean stage (turbulent flow Re ≈ 18500) without any flashback risk. The optical accessibility of the reactor has allowed insight into the combustion processes of both stages. Applying OH-LIF and OH*-chemiluminescence optical techniques, it was shown that mainly homogeneous reactions at rich conditions take place in the first stage, questioning the importance of a catalyst in the system, and opening a wide range of optimization possibilities. The promising results obtained in this study suggest that such a rich/lean staged burner with integrated heat transfer could help to develop a new generation of gas turbine burners for safe and clean combustion of H2-rich fuels.


Author(s):  
Neda Djordjevic ◽  
Niclas Hanraths ◽  
Joshua Gray ◽  
Phillip Berndt ◽  
Jonas Moeck

A change in the combustion concept of gas turbines from conventional isobaric to constant volume combustion, such as in pulse detonation combustion (PDC), promises a significant increase in gas turbine efficiency. Current research focuses on the realization of reliable PDC operation and its challenging integration into a gas turbine. The topic of pollutant emissions from such systems has so far received very little attention. Few rare studies indicate that the extreme combustion conditions in PDC systems can lead to high emissions of nitrogen oxides (NOx). Therefore, it is essential already at this stage of development to begin working on primary measures for NOx emissions reduction if commercialization is to be feasible. The present study evaluates the potential of different primary methods for reducing NOx emissions produced during PDC of hydrogen. The considered primary methods involve utilization of lean combustion mixtures or its dilution by steam injection or exhaust gas recirculation. The influence of such measures on the detonability of the combustion mixture has been evaluated based on detonation cell sizes modeled with detailed chemistry. For the mixtures and operating conditions featuring promising detonability, NOx formation in the detonation wave has been simulated by solving the one-dimensional (1D) reacting Euler equations. The study enables an insight into the potential and limitations of considered measures for NOx emissions reduction and lays the groundwork for optimized operation of PDC systems.


Author(s):  
Harald H. W. Funke ◽  
Jan Keinz ◽  
Karsten Kusterer ◽  
Anis Haj Ayed ◽  
Masahide Kazari ◽  
...  

Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOx (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOx emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOx emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOx emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOx formation.


Author(s):  
C. Striegan ◽  
A. Haj Ayed ◽  
K. Kusterer ◽  
H. H.-W. Funke ◽  
S. Loechle ◽  
...  

Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation once it can be combined with the use of renewable energy sources for its production. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers great potential to burn hydrogen in gas turbines at very low NOx emissions. The mixing of hydrogen and air is based on the jet in cross-flow (JICF) principle, where the gaseous fuel is injected perpendicular into the crossing air stream. The reaction takes place in multiple miniaturized diffusion flames with an inherent safety against flashback and the potential of low NOx emissions due to a short residence time of the reactants in the flame region. Aiming to further develop an existing burner design in terms of an increased energy density, a redesign is required in order to stabilize the flames at higher mass flows while maintaining low emission levels. For this reason, a systematic numerical analysis using CFD is carried out, to identify the interactions of combustion, radiation and heat conduction in the adjacent burner wall by conjugate heat transfer (CHT) methods. Different combustion models are applied, starting from a hybrid eddy break-up model to more advanced turbulence-chemistry interaction approaches considering detailed chemical mechanisms. Those allow an improved prediction of the different NO-pathways of production and consumption. The results of the simulations are in good agreement with atmospheric test rig data of optical flame structure, measured combustor surface temperatures and NOx emissions. The numerical methods help reducing the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Further on, the more detailed CFD-simulations support the understanding of decisive mechanisms to reduce the numerical work to the most important models for further industrial applications in future.


2015 ◽  
Vol 786 ◽  
pp. 238-242 ◽  
Author(s):  
Mohammadreza Tahan Bouriaabadi ◽  
Mohd Amin bin Abd Majid ◽  
Mohd Amin Abd Majid ◽  
Masdi Muhammad

Gas turbines offer a reduced weight and compact solution for installation on offshore platforms and floating facilities. The purpose of this study is to examine the influence of various parameters on offshore gas turbines performance. Operating measurements of a 23MW gas turbine installed at an offshore oil and gas plant in east of Peninsular Malaysia was used for model verification and evaluation. The results showed that the gas turbine performance improvements involve the study of a wide range of different parameters including ambient temperature, compression ratio, fuel-air ratio and operating load. These achieved relations will help in appropriate assessment of offshore gas turbines thermal efficiency.


Author(s):  
William D. York ◽  
Derrick W. Simons ◽  
Yongqiang Fu

F-class gas turbines comprise a major part of the heavy-duty gas turbine power generation fleet worldwide, despite increasing penetration of H/J class turbines. F-class gas turbines see a wide range of applications, including simple cycle peaking operation, base load combined cycle, demand following in simple or combined cycle, and cogeneration. Because of the different applications, local power market dynamics, and varied emissions regulations by region or jurisdiction, there is a need for operational flexibility of the gas turbine and the combustion system. In 2015, GE introduced a DLN2.6+ combustion system for new and existing 7F gas turbines. Approximately 50 are now in operation on 7F.04 and 7F.05 turbines, combining for nearly 150,000 fired hours. The system has been demonstrated to deliver 5 ppm NOx emissions @ 15% O2, and it exhibits a wide window of operation without significant thermoacoustic instabilities, owing the capability to premixed pilot flames on the main swirl fuel-air premixers, low system residence time, and air path improvements. Based on the success on the 7F, this combustion system is being applied to the 6F.03 in 2018. This paper highlights the flexibility of the 7F and 6F.03 DLN2.6+ combustion system and the enabling technology features. The advanced OpFlex* AutoTune control system tightly controls NOx emissions, adjusts fuel splits to stay clear of instabilities, and gives operators the ability to prioritize emissions or peak load output. Because of the low-NOx capability of the system, it is often being pushed to higher combustor exit temperatures, 35°C or more above the original target. The gas turbine is still meeting 9 or 15 ppm NOx emissions while delivering nearly 12% additional output in some cases. Single-can rig test and engine field test results show a relatively gentle NOx increase over the large range of combustor exit temperature because of the careful control of the premixed pilot fuel split. The four fuel legs are staged in several modes during startup and shutdown to provide robust operation with fast loading capability and low starting emissions, which are shown with engine data. The performance of a turndown-only fueling mode is highlighted with engine measurements of CO at low load. In this mode, the center premixer is not fueled, trading the NOx headroom for a CO emissions benefit that improves turndown. The combustion system has also demonstrated wide-Wobbe capability in emissions compliance. 7F.04 engine NOx and dynamics data are presented with the target heated gas fuel and also with cold fuel, producing a 24% increase in Modified Wobbe Index. The ability to run unheated fuel at base load may reduce the start-up time for a combined cycle plant. Lastly, there is a discussion of a new OpFlex* Variable Load Path digital solution in development that will allow operators to customize the start-up of a combined cycle plant.


Author(s):  
Elena Schneider ◽  
Amsini Sadiki ◽  
Alexander Maltsev ◽  
Johannes Janicka

Swirl flows play an important role in modern combustion systems such as gas turbines, aero propulsion systems etc. Next to desirable effects such as enhanced mixing such flows often exhibit aerodynamical instabilities called precessing vortex core. The configuration under study here represents a model Gas Turbine(GT) combustion chamber and features the main properties of real gas turbine combustors: a confined swirled flow with multiple recirculation zones and reattachment points, resulting in reacting case in a partially premixed methane/air aerodynamically stabilised flame. This flame exibits also precessing vortex core (PVC). The present study especially concentrates on an evaluation of the performance of different URANS-based model-combinations in predicting this confined swirling reacting flow exhibiting such aerodynamic instabilities. For this purpose an extended Bray-Moss-Libby model and a G-equation based approach, both coupled to the mixture fraction transport equation to account for partially premixed effects, are applied. Their prediction potential in capturing partially premixed combustion properties is appraised by comparison with LDV, Raman and PLIF measurements. It turns out that the influence of the combustion model on simulation results of the flame front stabilisation or mean flow field is not obvious. Nevertheless it could be mentioned that the computation time with G-equation was approximately three times longer than with BML model due to the reinitialization needed in steady case calculations and 2 times longer in case of unsteady calculations.


Author(s):  
Neda Djordjevic ◽  
Niclas Hanraths ◽  
Joshua Gray ◽  
Phillip Berndt ◽  
Jonas Moeck

A change in the combustion concept of gas turbines from conventional isobaric to constant volume combustion (CVC), such as in pulse detonation combustion (PDC), promises a significant increase in gas turbine efficiency. Current research focuses on the realization of reliable PDC operation and its challenging integration into a gas turbine. The topic of pollutant emissions from such systems has so far received very little attention. Few rare studies indicate that the extreme combustion conditions in PDC systems can lead to high emissions of nitrogen oxides (NOx). Therefore, it is essential already at this stage of development to begin working on primary measures for NOx emissions reduction, if commercialization is to be feasible. The present study evaluates the potential of different primary methods for reducing NOx emissions produced during pulsed detonation combustion of hydrogen. The considered primary methods involve utilization of lean combustion mixtures or its dilution by steam injection or exhaust gas recirculation. The influence of such measures on the detonability of the combustion mixture has been evaluated based on detonation cell sizes modelled with detailed chemistry. For the mixtures and operating conditions featuring promising detonability, NOx formation in the detonation wave has been simulated by solving the one-dimensional reacting Euler equations. The study enables an insight into the potential and limitations of considered measures for NOx emissions reduction and lays the groundwork for optimized operation of pulse detonation combustion systems.


Sign in / Sign up

Export Citation Format

Share Document