About the Numerical Simulation of Rotating Stall Mechanisms in Axial Compressors

Author(s):  
N. Gourdain ◽  
S. Burguburu ◽  
G. J. Michon ◽  
N. Ouayahya ◽  
F. Leboeuf ◽  
...  

This paper deals with the first instability which occurs in compressors, close to the maximum of pressure rise, called rotating stall. A numerical simulation of these flow phenomena is performed and a comparison with experimental data is made. The configuration used for the simulation is an axial single-stage and low speed compressor (compressor CME2, LEMFI). The whole stage is modeled with a full 3D approach and tip clearance is taken into account. The numerical simulation shows that at least two different mechanisms are involved in the stall inception. The first one leads to a rotating stall with 10 cells and the second one leads to a configuration with only 3 cells. Unsteady signals from the computation are analyzed thanks to a time-frequency spectral analysis. An original model is proposed, in order to predict the spatial and the temporal modes which are the results of the interaction between stall cells and the compressor stage. A comparison with measurements shows that the computed stall inception point corresponds to the experimental limit of stability. The performance of the compressor during rotating stall is also well predicted by the simulation.

Author(s):  
Joshua D. Cameron ◽  
Scott C. Morris ◽  
Sean T. Barrows ◽  
Jen-Ping Chen

Experimental studies of stall inception in axial compressors typically involve the measurement of basic flow variables (often pressure or velocity) with low spatial resolution. These measurements are used to make inferences about the fluid dynamics of stall. This experimental paradigm has been used by many investigators to great effect over the last several decades. However, several limitations remain which restrict the utility of these types of measurements for developing further insight into stall inception physics. Primary among these limitations is the impracticality of making measurements within the rotating blade passages. This is especially troublesome in light of recent computational studies which indicate that the generation of short length-scale rotating disturbances is related to the rotor tip clearance flow. This study utilized the results of a recent full annulus rotating stall simulation to investigate the relationships between the casing pressure field and less observable flow quantities which are believed to be causally related to the generation of rotating disturbances. The CFD results are assumed to represent the true flow physics within the compressor. To the extent that this approximation is true, these results can be used to interpret the meaning of experimental measurements of basic flow variables. These observations not only provide new insight into the interpretation of the large catalog of experimental stall measurements found in the literature, they also give directives for future measurements and numerical simulations.


Author(s):  
Yong Sang Yoon ◽  
Shin Hyung Kang ◽  
Seung Jin Song

The effects of impeller inlet tip clearance and diffuser width on centrifugal compressor characteristic and stability have been experimentally investigated in a centrifugal compressor with a vaneless diffuser. An increase in the impeller inlet tip clearance decreases the overall pressure rise across the compressor, mainly due to the tip clearance loss in the impeller. However, the effect of inlet tip clearance on diffuser pressure rise or compressor stability is weak. A decrease in the diffuser width significantly lowers the compressor pressure rise, especially at hight flow rates. At the component level, the impeller is insensitive to the diffuser width variation, and the pressure rise across the diffuser actually increases as diffuser width is decreased. Upon further investigation, it has been found that the overall compressor characteristic is strongly influenced by the region between the impeller exit and the diffuser inlet. Also, a decrease in the diffuser width delays stall inception by increasing the radial velocity of the flow in the diffuser. Thus, the stalling flow coefficient is more sensitive to the variation in the diffuser than the inlet tip clearance. In all cases, rotating stall consists of two or three cells rotating at about approximately one tenth of the compressor rotational speed. When the number of cells changes from three to two, the rotational speed drops. However, when the number of cells remains constant, the cells’ rotational speed increases as flow coefficient is lowered. All of these trends agree well with predictions from a new stability model developed by the first author.


Author(s):  
Jiayi Zhao ◽  
Guang Xi ◽  
Zhiheng Wang ◽  
Yang Zhao

The spike-type rotating stall (RS) inception inside the vaned-diffuser, which seriously restricts the performance range and brings the problems of blade fatigue, still seems to be a ‘mystery’ since its randomness. The paper intends to explain the mechanisms of this stall inception. To quantitatively assess the critical unsteady behavior to the initiation of RS inception, the transient measurement characterizes the process falling into the RS through the parameter of ‘blade passing irregularity’. The underlying vortex disturbance, related to the growing of the flow complexity and the final spike-type precursor, is further revealed by the full-annulus simulation. The results show the propagation principle of the vortexes from the design to the stall inception point, reflected by the distribution of ‘blade passing irregularity’. The performance change of different sub-components due to the vortex behavior is presented. At the RS limit, the sudden ramp-up of the ‘blade passing irregularity’ near the leading edge (LE), accompanied with the drop of the static pressure rise in the sub-component between the semi-vaneless and throat, corresponds to the spike-type inception in the form of a clockwise vortex connecting the suction side of the diffuser vane and the pressure side of the adjacent vane. Besides, when approaching the spike-type inception point, the couple effect of the growing potential of the diffuser vane and the enhanced vortex disturbance at the impeller outlet degrades the diffuser inlet flow.


Author(s):  
Baofeng Tu ◽  
Jun Hu ◽  
Yong Zhao

Rotating stall is one of the unsteady phenomena in multistage axial compressors that will damage both of performance and service life of aero engines. Stall inception is a dynamic process including appearance of pre-stall disturbance, evolvement of disturbances into stall cells, and development of stall cells. The main purpose in researching stall inception is to reveal the origins of disturbances and stall cells, investigate the effects of aerodynamic design variations on stall inception, and find the effective ways to prevent engines from turning into rotating stall or surge. Numerical simulation is an economic, reliable and rapid tool to study stall inception. As stall inception is three-dimensional and unsteady, numerical simulation should be capable of describing these aspects. In this paper, a three dimensional unsteady computational model based on the three-dimensional unsteady Euler equations and the three dimensional multi actuator-disks model has been developed. The computational domain can be divided into two kinds. One is blade-free regions, which consist of upstream duct, the axial gaps among blade rows, and downstream duct. The other one is blade rows. The flows in blade-free regions considered inviscid, unsteady, and can be resolved using three-dimensional unsteady Euler equations. The blade rows are replaced by multi actuator-disks with different total-to-static characteristics. By added the correlation functions of inlet and outlet flow angles, we can compute the flow field by combining the Euler equations and the multi actuator-disks model. A two-stage low-speed compressor in NUAA has been investigated, and the predicted results indicates that the second stage comes out stall cell first, and the full developed stall cell rotates at about 40.4% rotor speed, which coincides with the experimental data.


Author(s):  
Joshua D. Cameron ◽  
Matthew A. Bennington ◽  
Mark H. Ross ◽  
Scott C. Morris ◽  
Thomas C. Corke

Effects of rotor centerline offset and whirl on the pre-stall and stall inception behavior of a high-speed tip-critical axial compressor were investigated. The observations were made using a circumferential array of unsteady pressure transducers. The maximum amount of rotor offset and whirl used in this investigation was 26% and 13% of the design axisymmetric tip clearance respectively. Measurements were conducted using transient throttle movements which quickly decreased the mass flow in the compressor until the onset of rotating stall. A second set of measurements used quasi-transient throttling starting from a mass flow about 0.5% larger than the stalling mass flow. These data were analyzed with the traveling wave energy method, visual inspection of the filtered pressure traces, and a two-point spatial correlation technique. For the uniform tip clearance case rotating stall occurred while the slope of the pressure rise characteristic was negative. As expected, the flow breakdown exhibited “spike” inception with no observable rotating disturbances in the pre-stall time period. The introduction of small levels of steady and unsteady tip clearance asymmetry did not significantly alter the time average performance of the stage; circumferential variations in pressure rise and flow coefficient were minimal and the stalling flow coefficient remained unchanged. However, significant short length-scale rotating disturbances were observed in both of these cases prior to stall inception. As in the symmetric tip clearance case, short length-scale disturbances initiated rotating stall in the non-uniform tip clearance experiments. The location of the generation of the incipient stall cells with respect to the non-uniform tip clearance was strongly effected by the rotor offset/whirl.


Author(s):  
G. Pullan ◽  
A. M. Young ◽  
I. J. Day ◽  
E. M. Greitzer ◽  
Z. S. Spakovszky

In this paper we describe the structures that produce a spike-type route to rotating stall and explain the physical mechanism for their formation. The descriptions and explanations are based on numerical simulations, complemented and corroborated by experiments. It is found that spikes are caused by a loss of pressure rise capability in the rotor tip region, due to flow separation resulting from high incidence. The separation gives rise to shedding of vorticity from the leading edge and the consequent formation of vortices that span between the suction surface and the casing. As seen in the rotor frame of reference, near the casing the vortex convects toward the pressure surface of the adjacent blade. The approach of the vortex to the adjacent blade triggers a separation on that blade so the structure propagates. The above sequence of events constitutes a spike. The simulations show shed vortices over a range of tip clearances including zero. The implication is that they are not part of the tip clearance vortex, in accord with recent experimental findings. Evidence is presented for the existence of these vortex structures immediately prior to spike-type stall and, more strongly, for their causal connection with spike-type stall inception. Data from several compressors are shown to reproduce the pressure and velocity signature of the spike-type stall inception seen in the simulations.


2002 ◽  
Vol 2002 (0) ◽  
pp. 101-102
Author(s):  
Kazutoyo YAMADA ◽  
Masato FURUKAWA ◽  
Masahiro INOUE

Author(s):  
Jiaguo Hu ◽  
Tianyu Pan ◽  
Wenqian Wu ◽  
Qiushi Li ◽  
Yifang Gong

The instability has been the largest barrier of the high performance axial compressor in the past decades. Stall inception, which determines the route and the characteristics of instability evolution, has been extensively focused on. A new stall inception, “partial surge”, is discovered in the recent experiments. In this paper full-annulus transient simulations are performed to study the origin of partial surge initiated inception and explain the aerodynamic mechanism. The simulations show that the stall inception firstly occurs at the stator hub region, and then transfers to the rotor tip region. The compressor finally stalled by the tip region rotating stall. The stall evolution is in accord with the experiments. The stall evolution can be divided into three phases. In the first phase, the stator corner separation gradually merged with the adjacent passages, producing an annulus stall cell at the stator hub region. In the second phase, the total pressure rise of hub region emerges rapid decline due to the fast expansion of the annulus stall cell, but the tip region maintains its pressure rise. In the third phase, a new rotating stall cell appears at the rotor tip region, leading to the onset of fast drop of the tip region pressure rise. The stall cells transfer from hub region to the tip region is caused by two factors, the blockage of the hub region which transfers more load to the tip region, and the separation fluid fluctuations in stator domain which increase the circumferential non-uniformity in the rotor domain. High load and non-uniformity at the rotor tip region induce the final rotating stall.


Author(s):  
Gabriel Margalida ◽  
Pierric Joseph ◽  
Olivier Roussette ◽  
Antoine Dazin

The present paper aims at evaluating the surveillance parameters used for early stall warning in axial compressors, and is based on unsteady pressure measurements at the casing of a single stage axial compressor. Two parameters—Correlation and Root Mean Square (RMS)—are first compared and their relative performances discussed. The influence of sensor locations (in both radial and axial directions) is then considered, and the role of the compressor’s geometrical irregularities in the behavior of the indicators is clearly highlighted. The influence of the throttling process is also carefully analyzed. This aspect of the experiment’s process appears to have a non-negligible impact on the stall warning parameters, despite being poorly documented in the literature. This last part of this research work allow us to get a different vision of the alert parameters compared to what is classically done in the literature, as the level of irregularity that is reflected by the magnitude of the parameters appears to be an image of a given flow rate value, and not a clear indicator of the stall inception.


Author(s):  
L. G. Fre´chette ◽  
O. G. McGee ◽  
M. B. Graf

A theoretical evaluation was conducted delineating how aeromechanical feedback control can be utilized to stabilize the inception of rotating stall in axial compressors. Ten aeromechanical control methodologies were quantitatively examined based on the analytical formulations presented in the first part of this paper (McGee et al, 2003a). The maximum operating range for each scheme is determined for optimized structural parameters, and the various schemes are compared. The present study shows that the most promising aeromechanical designs and controls for a class of low-speed axial compressors were the use of dynamic fluid injection. Aeromechanically incorporating variable duct geometries and dynamically re-staggered IGV and rotor blades were predicted to yield less controllability. The aeromechanical interaction of a flexible casing wall was predicted to be destabilizing, and thus should be avoided by designing sufficiently rigid structures to prevent casing ovalization or other structurally-induced variations in tip clearance. Control authority, a metric developed in the first part of this paper, provided a useful interpretation of the aeromechanical damping of the coupled system. The model predictions also show that higher spatial modes can become limiting with aeromechanical feedback, both in control of rotating stall as well as in considering the effects of lighter, less rigid structural aeroengine designs on compressor stability.


Sign in / Sign up

Export Citation Format

Share Document