Performance Predicting Modeling of Axial-Flow Compressor at Design and Off-Design Conditions

Author(s):  
Ali Madadi ◽  
Ali Hajilouy Benisi

Axial flow compressor is one of the most important parts of gas turbine units. Therefore, its design and performance prediction are very important. One-dimensional modeling is a simple, fast and accurate method for performance prediction of any type of compressors with different geometries. In this approach, inlet flow conditions and compressor geometry are known and by considering various compressor losses, velocity triangles at rotor, and stator inlets and outlets are determined, and then compressor performance characteristics are predicted. Numerous models have been developed theoretically and experimentally for estimating various types of compressor losses. In present work, performance characteristics of the axial-flow compressor are predicted based on one-dimensional modeling approach. In this work, models of Lieblein, Koch-Smith, Herrig, Johnsen-Bullock, Pollard-Gostelow, Aungier, Hunter-Cumpsty Reneau are implemented to consider compressor losses, incidence angles, deviation angles, stall and surge conditions. The model results are compared with experimental data to validate the model. This model can be used for various types of single stage axial-flow compressors with different geometries, as well as multistage axial-flow compressors.

Author(s):  
Dario Bruna ◽  
Carlo Cravero ◽  
Mark G. Turner

The development of a computational tool (MP-LOS) for the aerodynamic loss modeling and prediction for axial-flow compressor blade sections is presented in this paper. A state-of-the-art quasi 3-D flow solver, MISES, has been used for the flow analysis on existing airfoil geometries in many working conditions. Different values of inlet flow angle, inlet Mach number, AVDR, Reynolds number and solidity have been chosen to investigate a possible working range. The target is a loss prediction formulation that will be introduced into throughflow or axisymmetric Navier-Stokes codes for the performance prediction of multistage axial flow compressors. The loss coefficient has been correlated to the flow parameters that have shown an influence on the profile loss for the blades under study. The proposed correlation, using the described computational approach, can be extended to any profile family with the aid of any code for the parametric design of blade profiles.


1961 ◽  
Vol 83 (3) ◽  
pp. 303-320 ◽  
Author(s):  
Karl Kovach ◽  
D. M. Sandercock

A five-stage axial-flow compressor with all rotors operating with transonic relative inlet Mach numbers was designed as a research vehicle at the Lewis Research Center in 1952. The compressor was designed and tested as a component of a turbojet engine. This paper summarizes the research work done on this compressor including the aerodynamic design and detailed performance characteristics.


Author(s):  
Sangjo Kim ◽  
Donghyun Kim ◽  
Kuisoon Kim ◽  
Changmin Son ◽  
Myungho Kim ◽  
...  

New off-design profile loss models have been developed by performing thorough investigations on compressor performance prediction using one-dimensional stage-stacking approach and three-dimensional computational flow dynamics (CFD) results. Generally, a loss model incorporating various compressor geometry and operating conditions is required to predict the performance of various types of compressors. In this study, three sets of selected loss models were applied to predict axial flow compressor performance using stage-stacking approach. The results were compared with experimental data as well as CFD results. The comparison shows an interesting observation in choking region where the existing loss models cannot capture the rapid decrease in pressure and efficiency while CFD predicted the characteristics. Therefore, an improved off-design profile loss model is proposed for better compressor performance prediction in choking region. The improved model was derived from the correlation between the normalized total loss and the incidence angle. The choking incidence angle, which is a major factor in determining the off-design profile loss, was derived from correlations between the inlet Mach number, throat width-to-inlet spacing ratio, and minimum loss incidence angle. The revised stage-stacking program employing new profile loss model together with a set of loss models was applied to predict a single and multistage compressors for comparison. The results confirmed that the new profile loss model can be widely used for predicting the performance of single and multistage compressor.


1995 ◽  
Vol 117 (3) ◽  
pp. 307-319 ◽  
Author(s):  
D. L. Gysling ◽  
E. M. Greitzer

Dynamic control of rotating stall in an axial flow compressor has been implemented using aeromechanical feedback. The control strategy developed used an array of wall jets, upstream of a single-stage compressor, which were regulated by locally reacting reed valves. These reed valves responded to the small-amplitude flow-field pressure perturbations that precede rotating stall. The valve design was such that the combined system, compressor plus reed valve controller, was stable under operating conditions that had been unstable without feedback. A 10 percent decrease in the stalling flow coefficient was obtained using the control strategy, and the extension of stable flow range was achieved with no measurable change in the steady-state performance of the compression system. The experiments demonstrate the first use of aeromechanical feedback to extend the stable operating range of an axial flow compressor, and the first use of local feedback and dynamic compensation techniques to suppress rotating stall. The design of the experiment was based on a two-dimensional stall inception model, which incorporated the effect of the aeromechanical feedback. The physical mechanism for rotating stall in axial flow compressors was examined with focus on the role of dynamic feedback in stabilizing compression system instability. As predicted and experimentally demonstrated, the effectiveness of the aeromechanical control strategy depends on a set of nondimensional control parameters that determine the interaction of the control strategy and the rotating stall dynamics.


1976 ◽  
Author(s):  
L. E. Brown

Stage performance characteristics provide a powerful analytic tool for experimentally matching the stages and blade rows of an axial-flow compressor, while the variable stage compressor component test rig provides a most powerful experimental tool for developing compressors. This paper describes: Why and how the stage characteristics “normalized” to correct them for changes of stator setting angles, how these normalized characteristics can be fully defined for every stage; and how these characteristic can point the way to a well-matched configuration of setting angles. In addition, it proposes methods for distinguishing between the stall of rotors and stators and for normalizing the characteristics of stages with variable-setting rotor blade rows.


1978 ◽  
Vol 100 (4) ◽  
pp. 698-703 ◽  
Author(s):  
A. R. Howell ◽  
W. J. Calvert

Modern through-flow solutions, with allowances for losses, etc., give good predictions around design conditions. They are more difficult to apply effectively when individual blade rows are operating under positive stall, negative stall or choke conditions, as can happen off-design in multistage axial-flow compressors of medium and high pressure ratios. A return has been made at the National Gas Turbine Establishment to stage stacking techniques to help solve the off-design performance problems. Basically a new mean radius or one-dimensional analysis has been developed with particular reference to the stall and choke conditions: corrections are then introduced for radial variations and for stage parameters such as blockage and work done factors. Examples on the use of the technique have been selected to illustrate both its success and difficulties.


Author(s):  
D. L. Gysling ◽  
E. M. Greitzer

Dynamic control of rotating stall in an axial flow compressor has been implemented using aeromechanical feedback. The control strategy developed used an array of wall jets, upstream of a single-stage compressor, which were regulated by locally reacting reed valves. These reed valves responded to flowfield pressure perturbations associated with the small amplitude perturbations that precede rotating stall. The valve design was such that the combined system, compressor plus reed valve controller, was stable under operating conditions that had been unstable without feedback. A 10% decrease in the stalling flow coefficient was achieved using the control strategy, and the stable flow range was extended with no noticeable change in the steady state performance of the compression system. The experimental demonstration is the first use of aeromechanical feedback to extend the stable operating range of an axial flow compressor. It is also the first use of local feedback and dynamic compensation techniques to suppress rotating stall. The design of the experiment was based on a two-dimensional stall inception model which incorporated the effect of the aeromechanical feedback. The physical mechanism for rotating stall in axial flow compressors was examined with focus on the role of dynamic feedback in stabilizing compression system instability. The effectiveness of the aeromechanical control strategy was predicted, and experimentally demonstrated, to depend on a set of non-dimensional control parameters that determine the interaction of the control strategy and the rotating stall dynamics.


Sign in / Sign up

Export Citation Format

Share Document