through flow
Recently Published Documents


TOTAL DOCUMENTS

739
(FIVE YEARS 153)

H-INDEX

36
(FIVE YEARS 4)

Author(s):  
Dalila Menacer ◽  
Saadoun Boudebous ◽  
Abdeldjalil Slimani ◽  
Lakhdar Saihi

In this paper, a numerical investigation of the steady laminar mixed convection flow in a porous square enclosure has been considered. This structure represents a practical system such as an external through flow of cooled-air an electronic device from its moving sides. The heating was supplied by an internal volumetric source with an uniform distribution at the middle part of its bottom, while the other walls were assumed thermally insulated. Moreover, the momentum transfer in the porous substrate was numerically investigated using the Darcy-Brinkman-Forchheimer law. The governing equations of the posed problem have been solved by applying the finite difference technique on non-uniform grids. For all simulations, the Reynolds number and the porosity have been fixed respectively to Re=100 and φ=0.9. Darcy’s value was varied in the range from 0.001 to 0.1. The results detected the existence of a radical change in the contour patterns for Richardson number equal to 11.76 and 11.77 with fixed Da=0.1. This behavior signified that the fluid is fully convected for higher Darcy number.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Shimao Yang ◽  
Fei Gao ◽  
Min Li ◽  
Zhennan Gao

In literature, antiosteoporotic effects of Angelica sinensis root have been confirmed, but the impact of Angelica sinensis polysaccharide (ASP) on osteoblastic or adipogenic distinction of BMSCs is limited. This paper aimed to explore the role of ASP on proliferation and differentiation of rat BMSCs. Rat BMSCs were subjected to isolation and identification through flow cytometry. The proliferation of rat BMSCs under ASP was performed by CCK-8 kit. Measures of osteogenesis under different concentrations of ASP were detected by using alizarin red staining for mesenchymal cells differentiation and ALP activity assay to identify ALP activity. Quantitative RT-PCR was selected to identify osteoblastic or adipogenic biomarkers from a genetic perspective. Likewise, we have evaluated measures of indicators of Wnt/β-catenin signal. ASP significantly promoted the proliferation, increased osteogenesis, and decreased adipogenesis of rat BMSCs within the limit of 20–60 mg/L in a dose-dependent manner but was suppressed at 80 mg/L. The expression of cyclin D1 and ß-catenin showed a considerable rise over the course of ASP induced osteogenesis. Dickkopf 1 (DKK1) suppressed the regulation of rat BMSCs differentiation through the mediation of ASP. We have observed that ASP upregulated the osteogenic but downregulated adipogenic differentiation of BMSCs, and our findings help to contribute to effective solutions for treating bone disorders.


Author(s):  
M. El Hassan ◽  
V. Sobolik ◽  
A. Chamkha ◽  
M. Kristiawan

Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Ines Pottratz ◽  
Ines Müller ◽  
Christof Hamel

The production of prebiotics like galacto-oligosaccharides (GOS) on industrial scale is becoming more important due to increased demand. GOS are synthesized in batch reactors from bovine lactose using the cost intensive enzyme β-galactosidase (β-gal). Thus, the development of sustainable and more efficient production strategies, like enzyme immobilization in membrane reactors are a promising option. Activated methacrylatic monoliths were characterized as support for covalent immobilized β-gal to produce GOS. The macroporous monoliths act as immobilized pore-through-flow membrane reactors (PTFR) and reduce the influence of mass-transfer limitations by a dominating convective pore flow. Monolithic designs in the form of disks (0.34 mL) and for scale-up cylindric columns (1, 8 and 80 mL) in three different reactor operation configurations (semi-continuous, continuous and continuous with recirculation) were studied experimentally and compared to the free enzyme system. Kinetic data, immobilization efficiency, space-time-yield and long-term stability were determined for the immobilized enzyme. Furthermore, simulation studies were conducted to identify optimal operation conditions for further scale-up. Thus, the GOS yield could be increased by up to 60% in the immobilized PTFRs in semi-continuous operation compared to the free enzyme system. The enzyme activity and long-time stability was studied for more than nine months of intensive use.


2021 ◽  
Vol 11 (24) ◽  
pp. 11766
Author(s):  
C. Taber Wanstall ◽  
Phillip R. Johnson

Transpirational cooling is an effective thermal protection method in hypersonic vehicles. In order to properly manage the high heat load, an understanding of the convective flow regimes as well as the thermophysical properties of the working fluid are required. Often, the vehicle’s fuel is re-purposed as the coolant or working fluid that is passed through the porous media. If the geometry is such that the coolant is heated from below, buoyancy-induced instability can ensue resulting in a mixed convection phenomena. Transpirational cooling applications require a unique analysis which combines a Darcy–Forchheimer relationship for the momentum relation, a flowing base state which introduces non-negligible convective terms for the energy equation, and a novel consideration of a cubic density dependence on temperature. This latter feature is justified by fitting thermodynamic data for typical transpirational cooling conditions. A base state solution is provided and the onset of instability is investigated using linear stability analysis. The governing equations are solved utilizing multiple methods, comparing results from a combination of analytical solutions, finite difference, power series, and Chebyshev methods. Results demonstrate excellent consistency in predictions across these methods and indicate that including non-linear density effects promote a stabilizing effect. Finally, the effect of varying the net through-flow in the porous media is investigated.


2021 ◽  
Author(s):  
Huma Bhatti ◽  
Rubina Rubina ◽  
Faisal Rashid ◽  
Sumera Zaib ◽  
Jamshed Iqbal ◽  
...  

In our current study, a series of reactions with isolated natural flavonoids (2-phenylchromen-4-one) and flavanone (2,3-dihydro-2-phenylchromen-4-one) through Mannich base was carried out by a one-pot three-component reaction. Their structure-activity relationship study (SAR) reveals the anticancer activity of natural compounds and their Mannich bases. The flavones were substituted by imine at position C-8, while in the flavanones, the reaction takes place at positions C-8 and C-3. Spectroscopic techniques characterized all the isolated and newly synthesized derivatives. Anticancer activity was checked on HeLa and MCF-7 (cancer cell lines) and BHK-21 (normal cell line). Using propidium iodide (PI) and DAPI staining as fluorescence microscopic imaging was confirmed the Apoptotic effect of potent compound. Further, it was evaluated by cell cycle analysis through flow-cytometry, reactive oxygen species and lactate dehydrogenase production. The caspase-9 and -3 activity were estimated by mitochondrial membrane potential. Derivative of naringenin, ((2S)-4′,5,7-Trihydroxyflavan-4-one) where reactions occur at position C-3 were active than others.


Sign in / Sign up

Export Citation Format

Share Document