Influence of Friction on the Blow-Down Behavior of an Aramid Fiber Brush Seal

Author(s):  
Eric J. Ruggiero

Aramid fiber brush seals are ultra-low leakage, compliant sealing elements for turbomachinery applications. Such seals are applicable in the Aviation, Energy, and Oil and Gas markets as either air-air seals or air-oil seals. In the present study, the influence of friction present between the front plate and upstream side of the bristle pack of an aramid fiber brush seal is experimentally investigated. With the bristle pack fully exposed on the upstream side of the seal, the bristles are shown to blow down and create a better seal compared to the same brush seal with a front plate installed.

Author(s):  
Yahya Dogu ◽  
Ahmet S. Bahar ◽  
Mustafa C. Sertçakan ◽  
Altuğ Pişkin ◽  
Ercan Arıcan ◽  
...  

Brush seals require custom design and tailoring due to their behavior driven by flow dynamic, which has many interacting design parameters, as well as their location in challenging regions of turbomachinery. Therefore, brush seal technology has not reached a conventional level across the board standard. However, brush seal geometry generally has a somewhat consistent form. Since this consistent form does exist, knowledge of the leakage performance of brush seals depending on specific geometric dimensions and operating conditions is critical and predictable information in the design phase. However, even though there are common facts for some geometric dimensions available to designers, open literature has inadequate quantified information about the effect of brush seal geometric dimensions on leakage. This paper presents a detailed computational fluid dynamics (CFD) investigation quantifying the leakage values for some geometric variables of common brush seal forms functioning in some operating conditions. Analyzed parameters are grouped as follows: axial dimensions, radial dimensions, and operating conditions. The axial dimensions and their ranges are front plate thickness (z1 = 0.040–0.150 in.), distance between front plate and bristle pack (z2 = 0.010–0.050 in.), bristle pack thickness (z3 = 0.020–0.100 in.), and backing plate thickness (z4 = 0.040–0.150 in.). The radial dimensions are backing plate fence height (r1 = 0.020–0.100 in.), front plate fence height (r2 = 0.060–0.400 in.), and bristle free height (r3 = 0.300–0.500 in.). The operating conditions are chosen as clearance (r0 = 0.000–0.020 in.), pressure ratio (Rp = 1.5–3.5), and rotor speed (n = 0–40 krpm). CFD analysis was carried out by employing compressible turbulent flow in 2D axisymmetric coordinate system. The bristle pack was treated as a porous medium for which flow resistance coefficients were calibrated by using literature based test data. Selected dimensional and operational parameters for a common brush seal form were investigated, and their effects on leakage performance were quantified. CFD results show that, in terms of leakage, the dominant geometric dimensions were found to be the bristle pack thickness and the backing plate fence height. It is also clear that physical clearance dominates leakage performance, when compared to the effects of other geometric dimensions. The effects of other parameters on brush seal leakage were also analyzed in a comparative manner.


2005 ◽  
Vol 128 (2) ◽  
pp. 367-378 ◽  
Author(s):  
Yahya Dogu ◽  
Mahmut F. Aksit

Pressure and flow fields lay at the basis of such common phenomena affecting brush seal performance as bristle flutter, blow-down, hang-up, hysteresis, pressure stiffening, wear, and leakage. Over the past two decades of brush seal evolution, manufacturers and researchers have applied many geometric configurations to the front and backing plates of a standard brush seal in order to control the flow field and consequent seal performance. The number of studies evaluating the effect of geometric configurations on the brush seal flow field remains limited in spite of the high number of filed patent disclosures. This study presents a numerical analysis of brush seal pressure and flow fields with regard to common conceptual front plate configurations. A CFD model has been employed to calculate pressure and flow fields in the seal domain. The model incorporates a bulk porous medium approach for the bristle pack. The effectiveness of various conceptual geometries has been outlined in terms of flow field formation. Results disclose unique effects of geometry on pressure and flow fields such that a longer front plate drives outward radial flow while playing a protective role against upstream cavity disturbances. Findings also indicate that variations in front plate geometry do not directly affect leakage performance. A long front plate or damper shim considerably changes the flow field while at the same time having limited effect on the pressure field. Moreover, a strong suction towards the clearance enhances inward radial flow in clearance operation.


Author(s):  
Michael J. Pekris ◽  
Gervas Franceschini ◽  
David R. H. Gillespie

Compliant contacting filament seals such as brush seals are well known to give improved leakage performance and hence specific fuel consumption benefit compared to labyrinth seals. The design of the brush seal must be robust across a range of operating pressures, rotor speeds and radial build-offset tolerances. Importantly the wear characteristics of the seal must be well understood to allow a secondary air system suitable for operation over the entire engine life to be designed. A test rig at the University of Oxford is described which was developed for the testing of brush seals at engine-representative speeds, pressures and seal housing eccentricities. The test rig allows the leakage, torque and temperature rise in the rotor to be characterized as functions of the differential pressure(s) across the seal and the speed of rotation. Tests were run on two different geometries of bristle-pack with conventional, passive and active pressure-balanced backing ring configurations. Comparison of the experimental results indicates that the hysteresis inherent in conventional brush seal design could compromise performance (due to increased leakage) or life (due to exacerbated wear) as a result of reduced compliance. The inclusion of active pressure-balanced backing rings in the seal designs are shown to alleviate the problem of bristle-backing ring friction, but this is associated with increased blow-down forces which could result in a significant seal-life penalty. The best performing seal was concluded to be the passive pressure-balanced configuration, which achieves the best compromise between leakage and seal torque. Seals incorporating passive pressure-balanced backing rings are also shown to have improved heat transfer performance in comparison to other designs.


Author(s):  
Manish R. Thorat ◽  
Brian Bauer

Abstract Brush seals are used in turbomachinery for reduced leakage as compared to conventional seals such as labyrinth seals. Early applications tended to favor having a line-to-line to a slight interference fit of the bristles to the shaft, but more recent applications have favored the use of a slight initial clearance fit for the purpose of reducing bristle wear. In these brush seals with clearance, the phenomenon of bristle blow-down largely negates the leakage degradation due to clearance, with bristles bending to reduce the clearance gap. This paper presents experimental results for a 10.5 inch bore brush seal with 0.0028 inch bristle diameter. Bristle blow-down is characterized with measurements at three different clearances then compared to a calibrated brush seal leakage model. Tolerances in brush installation may lead to a brush seal bore that is eccentric to the rotor. The influence of this seal eccentricity on measured leakage performance is also characterized in the paper. Seal eccentricities up to 55% of brush fence height are tested. Effective clearances for eccentric operation are estimated from the measurements. Brush seals are described as unidirectional seals because the bristles have a lay angle in the direction of rotation. This paper also investigates the influence of rotation direction on measured leakage performance of brush seal. This influence is characterized by non-pressurized reverse rotation operation and measurement of leakage performance prior to and after reverse rotation operation.


Author(s):  
Yuanqiao Zhang ◽  
Jun Li ◽  
Xin Yan ◽  
Zhigang Li

The leakage characteristics of interference and clearance brush seals were experimentally measured and numerically simulated in this paper. The leakage coefficients of the brush seals without a deflector plate at different pressure differentials were firstly measured. The effect of deflector plate and clearance on seal performance and the detailed flow field of the brush seal were numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solutions coupled with a Non-Darcian Porous Medium model. In addition, this study experimentally investigated the hysteresis characteristic of interference and clearance brush seals without deflector plates, and presented detailed investigations on the blow down effect of clearance brush seal using Computational Fluid Dynamics (CFD) as mentioned above and Finite Element Method (FEM) approaches. The obtained results show that the leakage coefficient and blow-down effect of the brush seal with a deflector plate is lower than that of the brush seal without a deflector plate at the same pressure difference and the clearance between the bristle pack and shaft will increase the leakage coefficient significantly. The different hysteresis characteristics of interference and clearance brush seals are illustrated and discussed.


Author(s):  
Deepak Trivedi ◽  
Binayak Roy ◽  
Mehmet Demiroglu ◽  
Xiaoqing Zheng

Brush seals are used in a wide variety of turbomachinery for sealing rotor-stator and stator-stator clearances. Application of traditional brush seals is limited by their life and performance at high differential pressures. GE’s patent-pending Variable Bristle Diameter (VBD) brush seal overcomes the limitations of the traditional brush seal by sandwiching a layer of fine bristles, with better sealing capability, between adjacent rows of stiffer bristles capable of withstanding larger differential pressure and flow disturbance. The General Electric VBD design uses thick bristles both in front and back rows. In addition to leakage performance, for successful design it is important to understand the force interactions between a brush seal bristle pack and the rotor. The important failure mechanisms to avoid include overheating and rotor dynamic instabilities caused by excessive brush seal forces. Brush seal stiffness, defined as brush seal force per unit circumferential length per unit incursion of the rotor, depends on the complex interaction of the pressure-dependent inter-bristle forces, the blow-down forces and the friction forces between the backplate and the bristle pack. Furthermore, brush seals exhibit different hysteresis and wear behavior under different pressure loading conditions. In this article, we present experimentally measured leakage, stiffness and wear characteristics of three different VBD brush seal designs subjected to a wide range of pressure loading.


Author(s):  
Eric J. Ruggiero ◽  
Jason Allen ◽  
Mark Lusted

Non-metallic brush seals, and more specifically, Kevlar® (aramid) fiber brush seals, are an emerging sealing technology in low-pressure, low temperature applications. Compared to metallic brush seals, aramid fibers are an order of magnitude smaller in diameter and consequently offer much tighter sealing capability. Further, their compliant nature requires minimal pressure drops across the seal to encourage blow-down of the bristle pack onto the rotor during operation. Similarly, their compliant nature also enables the bristle pack to correct for alignment issues and to recover from radial growth transients of the rotor. Proper design of the bristle pack stiffness is critical to the successful operation of the seal. If the seal is designed to be too soft, frictional forces prohibit the recovery of the bristle pack if pressed away from the rotor. Conversely, if designed too stiffly, then the heat generation at the sliding interface of the seal accelerates the degradation of the seal. The goal of the present paper is to present the experimental techniques developed to guide the design of aramid fiber brush seals. Two experimental test methodologies will be presented: a direct stiffness measurement and a heat generation measurement. Both testing procedures have been used to successfully design seals for various GE turbomachinery products.


Author(s):  
Gervas Franceschini ◽  
Jonathan J. Morgan ◽  
Terry V. Jones ◽  
David R. H. Gillespie

An appreciation of the importance of bristle stiffening and hysteresis in brush seals has led to the development of a test facility capable of making stiffness measurements at different seal pressures. Engine scale seals are tested under engine representative differential pressures and eccentric movements in the test facility. To cover current and future sealing requirements the facility is capable of up to 12,5 bar differential pressures across the seal and eccentric rotor to casing movements of 2,5 mm. A slow-speed rotating rotor allows the dynamic friction directions of the contacting seal elements to be matched with the engine application. Both the eccentric cycle through which the seal is driven and the low-speed rotation of the central shaft are computer controlled to ensure known conditions are obtained and experimental repeatability. It has not been necessary to simulate engine temperatures, rotor speeds and radial growth between the engine and test facility. In this paper the test facility is fully described. Experimental results, showing torque, flow and stiffness characteristics from a typical prototype engine brush seal are reported, with full details of the experimental uncertainties. The effects of bristle stiffening, seal hysteresis, and bristle blow-down on the quantities above are detailed in the results.


Author(s):  
Jun Li ◽  
Bo Qiu ◽  
Zhenping Feng

The leakage rate of the labyrinth brush seal was experimentally measured and numerically investigated in this paper. Four different rotational speeds of 0, 1500, 2400 and 3000 rpm were utilized to investigate the effects on the leakage rate of the labyrinth brush seal. In addition, five different pressure ratios and two initial clearances were also adopted to study the influences of pressure ratio and clearance size on the leakage rate of the labyrinth brush seal. The leakage rates of the experimental labyrinth brush seal at different rotational speeds, pressure ratios, and initial clearances were also predicted using Reynolds-averaged Navier-Stokes (RANS) solutions coupling with a non-Darcian porous medium model. The rotor centrifugal growth and bristle blow-down effects were considered in the present numerical research. The rotor centrifugal growth at different rotational speeds was calculated using the finite element method (FEM). The variation of the sealing clearance size with rotor centrifugal growth and bristle blow-down was analyzed. The numerical leakage rate was in good agreement with the experimental data. The effects of rotational speeds, pressure ratios, and clearance sizes on the leakage flow characteristics of brush seals were also investigated based on the experimental data and numerical results. The detailed leakage flow fields and pressure distributions of the brush seals were also presented.


Author(s):  
Yahya Doğu ◽  
Mustafa C. Sertçakan ◽  
Ahmet S. Bahar ◽  
Altuğ Pişkin ◽  
Ercan Arıcan ◽  
...  

Brush seals require custom design and tailoring due to their behavior driven by flow dynamic, which has many interacting design parameters, as well as their location in challenging regions of turbomachinery. Therefore, brush seal technology has not reached a conventional level across the board standard. However, brush seal geometry generally has a somewhat consistent form. Since this consistent form does exist, knowledge of the leakage performance of brush seals depending on specific geometric dimensions and operating conditions is critical and predictable information in the design phase. However, even though there are common facts for some geometric dimensions available to designers, open literature has inadequate quantified information about the effect of brush seal geometric dimensions on leakage. This paper presents a detailed CFD investigation quantifying the leakage values for some geometric variables of common brush seal forms functioning in some operating conditions. Analyzed parameters are grouped as follows; axial dimensions, radial dimensions and operating conditions. The axial dimensions and their ranges are front plate thickness (z1=0.040–0.150in.), distance between front plate and bristle pack (z2=0.010–0.050in.), bristle pack thickness (z3=0.020–0.100in.), and backing plate thickness (z4=0.040–0.150in.). The radial dimensions are backing plate fence height (r1=0.020–0.100in.), front plate fence height (r2=0.060–0.400in.), and bristle free height (r3=0.300–0.500in.). The operating conditions are chosen as clearance (r0=0.000–0.020in.), pressure ratio (Rp=1.5–3.5), and rotor speed (n=0–40krpm). CFD analysis was carried out by employing compressible turbulent flow in 2-D axi-symmetric coordinate system. The bristle pack was treated as a porous medium for which flow resistance coefficients were calibrated by using literature based test data. Selected dimensional and operational parameters for a common brush seal form were investigated, and their effects on leakage performance were quantified. CFD results show that, in terms of leakage, the dominant geometric dimensions were found to be the bristle pack thickness and the backing plate fence height. It is also clear that physical clearance dominates leakage performance, when compared to the effects of other geometric dimensions. The effects of other parameters on brush seal leakage were also analyzed in a comparative manner.


Sign in / Sign up

Export Citation Format

Share Document