Modeling and Simulation of Micro-Grid System Coupled With Small Wind Turbine

Author(s):  
Saili Li ◽  
Yiping Dai ◽  
Maoqing Li ◽  
Lin Gao

Wind energy has been examined as a clean and economic resource, however, the intermittent and fluctuate feature of which makes it necessary to couple with an energy storage system for compensating the wind energy curtailments. A micro-grid with a compressed air energy storage (CAES) system may help to eliminate the problem resulted from high wind power penetration in the power grid. What is more, it can reduce the network losses. A micro-grid system coupled with small wind turbine presented in this paper. Off-peak power from the wind turbine is used to drive the compressor which serves for the storage vessel. The compressed air supercharges the gas turbine directly when wind energy is not sufficient to guarantee the required load. A dynamic model is built to test the behavior of the system. A statistical model based on stochastic weather data is used to simulate the output of the wind turbine for one day at quarter-hour intervals. An accurate model of CAES includes a compressor, a high pressure vessel and a gas turbine is built in details. A control system is developed to achieve outstanding system’s characteristics like great control performance, stable operation and fast starting. The simulation results show that the CAES can compensate the wind turbine and make the most of wind energy.

2014 ◽  
Vol 945-949 ◽  
pp. 2841-2845
Author(s):  
Yu Jie Liu ◽  
Wei Hua Li ◽  
Xiang Hua Luo ◽  
Cheng Su ◽  
Shi Xue Ding ◽  
...  

With the development of the power system, wind energy was applied to micro-grid system as a distributed generation. The output of the wind farms has the characteristic of intermittence and fluctuation, which would influent the stability of micro-grid system and can be solved effectively by compressed air energy storage system, a new energy storage technology. Because of the advantage of fast response, high economic performance and small environmental impacts, it has an extensive application prospect. This paper builds a micro-grid system with wind power generator, and control the output of micro-grid system by using compressed air energy storage system. The simulation result verifies that the compressed-air energy storage system can effectively suppress power fluctuation and improving the stability of the micro-grid system.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Sign in / Sign up

Export Citation Format

Share Document