Simulation of Multi-Stage Compressor at Off-Design Conditions

Author(s):  
Feng Wang ◽  
Mauro Carnevale ◽  
Luca di Mare ◽  
Simon Gallimore

Computational Fluid Dynamics (CFD) has been widely used for compressor design, yet the prediction of performance and stage matching for multi-stage, high-speed machines remain challenging. This paper presents the authors’ effort to improve the reliability of CFD in multistage compressor simulations. The endwall features (e.g. blade fillet and shape of the platform edge) are meshed with minimal approximations. Turbulence models with linear and non-linear eddy viscosity models are assessed. The non-linear eddy viscosity model predicts a higher production of turbulent kinetic energy in the passages, especially close to the endwall region. This results in a more accurate prediction of the choked mass flow and the shape of total pressure profiles close to the hub. The non-linear viscosity model generally shows an improvement on its linear counterparts based on the comparisons with the rig data. For geometrical details, truncated fillet leads to thicker boundary layer on the fillet and reduced mass flow and efficiency. Shroud cavities are found to be essential to predict the right blockage and the flow details close to the hub. At the part speed the computations without the shroud cavities fail to predict the major flow features in the passage and this leads to inaccurate predictions of massflow and shapes of the compressor characteristic. The paper demonstrates that an accurate representation of the endwall geometry and an effective turbulence model, together with a good quality and sufficiently refined grid result in a credible prediction of compressor matching and performance with steady state mixing planes.

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Feng Wang ◽  
Mauro Carnevale ◽  
Luca di Mare ◽  
Simon Gallimore

Computational fluid dynamics (CFD) has been widely used for compressor design, yet the prediction of performance and stage matching for multistage, high-speed machines remains challenging. This paper presents the authors' effort to improve the reliability of CFD in multistage compressor simulations. The endwall features (e.g., blade filet and shape of the platform edge) are meshed with minimal approximations. Turbulence models with linear and nonlinear eddy viscosity models are assessed. The nonlinear eddy viscosity model predicts a higher production of turbulent kinetic energy in the passages, especially close to the endwall region. This results in a more accurate prediction of the choked mass flow and the shape of total pressure profiles close to the hub. The nonlinear viscosity model generally shows an improvement on its linear counterparts based on the comparisons with the rig data. For geometrical details, truncated filet leads to thicker boundary layer on the filet and reduced mass flow and efficiency. Shroud cavities are found to be essential to predict the right blockage and the flow details close to the hub. At the part speed, the computations without the shroud cavities fail to predict the major flow features in the passage, and this leads to inaccurate predictions of mass flow and shapes of the compressor characteristic. The paper demonstrates that an accurate representation of the endwall geometry and an effective turbulence model, together with a good quality and sufficiently refined grid, result in a credible prediction of compressor matching and performance with steady-state mixing planes.


Author(s):  
Zinon Vlahostergios ◽  
Kyros Yakinthos

This paper presents an effort to model separation-induced transition on a flat plate with a semi-circular leading edge, by using two advanced turbulence models, the three equation non-linear model k-ε-A2 of Craft et al. [16] and the Reynolds-stress model of Craft [13]. The mechanism of the transition is governed by the different inlet velocity and turbulence intensity conditions, which lead to different recirculation bubbles and different transition onset points for each case. The use of advanced turbulence models in predicting the development of transitional flows has shown, in past studies, good perspectives. The k-ε-A2 model uses an additional transport equation for the A2 Reynolds stress invariant and it is an improvement of Craft et al. [12] non-linear eddy viscosity model. The use of the third transport equation gives improved results in the prediction of the longitudinal Reynolds stress distributions and especially, in flows where transitional phenomena may occur. Although this model is a pure eddy-viscosity model, it borrows many aspects from the more complex Reynolds-stress models. On the other hand, the use of an advanced Reynolds-stress turbulence model, such as the one of Craft [13], can predict many complex flows and there are indications that it can be applied to transitional flows also, since the crucial terms of Reynolds stress generation are computed exactly and normal stress anisotropy is resolved. The model of Craft [13], overcomes the drawbacks of the common used Reynolds-stress models regarding the computation of wall-normal distances and vectors in order to account for wall proximity effects. Instead of these quantities, it employs “normalized turbulence lengthscale gradients” which give the ability to identify the presence of strong inhomogeneity in a flow development, in an easier way. The final results of both turbulence models showed acceptable agreement with the experimental data. In this work it is shown that there is a good potential to model separation-induced transitional flows, with advanced turbulence modeling without any additional use of ad-hoc modifications or additional equations, based on various transition models.


Author(s):  
Riccardo Mereu ◽  
Emanuela Colombo ◽  
Fabio Inzoli

The use of numerical approach to support design and product development on industrial applications is nowadays quite widespread. Many industrial applications involve turbulent fluid flows, whose modeling still represents the bottleneck for a wider usage of numerical methods. Indeed, the application of the CFD approach to industrial problem has a number of high demanding requirements since it must deal with relatively short computational time, high geometrical complexity and high Reynolds numbers. These industrial constrains nowadays may be partially faced through RANS approach even if poor capability in predicting accurately the fluid dynamics of complex flows still represents their well known weakness. The aim of this work is to provide a model able to improve the prediction of the flow field in complex flows of industrial interest, with special attention to the presence of strong curvature. Therefore, in order to obtain an increase in the accuracy of the results compared with traditional k-ε models, the implementation of a two-equation Non Linear Eddy Viscosity Model (NLEVM) is proposed. The quadratic formulation of this model has already been validated by experimental and DNS data from literature. In the present work the cubic formulation of this model is applied to a strong-curve-geometry of industrial interest. The data are obtained through an experimental facility developed by the CFDLab of the Department of Energy at Politecnico di Milano. The measures are taken in cooperation with the Combustion and Optical Diagnostic Laboratory research group. The comparison between experimental and numerical data is carried out downstream a strong curvature by looking at mean axial velocity profiles and reattachment point prediction.


Author(s):  
Sagar Saroha ◽  
Sawan S. Sinha ◽  
Sunil Lakshmipathy

Purpose In recent years, the partially averaged Navier–Stokes (PANS) methodology has earned acceptability as a viable scale-resolving bridging method of turbulence. To further enhance its capabilities, especially for simulating separated flows past bluff bodies, this paper aims to combine PANS with a non-linear eddy viscosity model (NLEVM). Design/methodology/approach The authors first extract a PANS closure model using the Shih’s quadratic eddy viscosity closure model [originally proposed for Reynolds-averaged Navier–Stokes (RANS) paradigm (Shih et al., 1993)]. Subsequently, they perform an extensive evaluation of the combination (PANS + NLEVM). Findings The NLEVM + PANS combination shows promising result in terms of reduction of the anisotropy tensor when the filter parameter (fk) is reduced. Further, the influence of PANS filter parameter f on the magnitude and orientation of the non-linear part of the stress tensor is closely scrutinized. Evaluation of the NLEVM + PANS combination is subsequently performed for flow past a square cylinder at Reynolds number of 22,000. The results show that for the same level of reduction in fk, the PANS + NLEVM methodology releases significantly more scales of motion and unsteadiness as compared to the traditional linear eddy viscosity model (LEVM) of Boussinesq (PANS + LEVM). The authors further demonstrate that with this enhanced ability the NLEVM + PANS combination shows much-improved predictions of almost all the mean quantities compared to those observed in simulations using LEVM + PANS. Research limitations/implications Based on these results, the authors propose the NLEVM + PANS combination as a more potent methodology for reliable prediction of highly separated flow fields. Originality/value Combination of a quadratic eddy viscosity closure model with PANS framework for simulating flow past bluff bodies.


Sign in / Sign up

Export Citation Format

Share Document