eddy viscosity
Recently Published Documents


TOTAL DOCUMENTS

1135
(FIVE YEARS 160)

H-INDEX

58
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Phoebe Kuhn ◽  
Jens S. Müller ◽  
Sophie Knechtel ◽  
Julio Soria ◽  
Kilian Oberleithner

Author(s):  
Joshua G. Gebauer ◽  
David B. Parsons

Abstract An analytical model is presented for the generation of a Blackadar-like nocturnal low-level jet in a broad baroclinic zone. The flow is forced from below (flat ground) by a surface buoyancy gradient and from above (free atmosphere) by a constant pressure gradient force. Diurnally-varying mixing coefficients are specified to increase abruptly at sunrise and decrease abruptly at sunset. With attention restricted to a surface buoyancy that varies linearly with a horizontal coordinate, the Boussinesq-approximated equations of motion, thermal energy, and mass conservation reduce to a system of one-dimensional equations that can be solved analytically. Sensitivity tests with southerly jets suggest that (i) stronger jets are associated with larger decreases of the eddy viscosity at sunset (as in Blackadar theory), (ii) the nighttime surface buoyancy gradient has little impact on jet strength, and (iii) for pure baroclinic forcing (no free-atmosphere geostrophic wind), the nighttime eddy diffusivity has little impact on jet strength, but the daytime eddy diffusivity is very important and has a larger impact than the daytime eddy viscosity. The model was applied to a jet that developed in fair weather conditions over the Great Plains from southern Texas to northern South Dakota on 1 May 2020. The ECMWF Reanalysis v5 (ERA5) for the afternoon prior to jet formation showed that a broad north-south-oriented baroclinic zone covered much of the region. The peak model-predicted winds were in good agreement with ERA5 winds and lidar data from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in north-central Oklahoma.


2022 ◽  
Author(s):  
Tyler R. Hendrickson ◽  
Pramod Subbareddy ◽  
Graham V. Candler

Author(s):  
S. Lovato ◽  
G.H. Keetels ◽  
S.L. Toxopeus ◽  
J.W. Settels

2022 ◽  
Vol 388 ◽  
pp. 114216
Author(s):  
Qingxiang Shui ◽  
Xinyi Wu ◽  
Chao Hong ◽  
Yunwei Zhang ◽  
Nyuk Hien Wong ◽  
...  

Author(s):  
Md Mizanur Rahman ◽  
Khalid Hasan ◽  
Wenchang Liu ◽  
Xinming Li

A new zero-equation model (ZEM) is devised with an eddy-viscosity formulation using a stress length variable which the structural ensemble dynamics (SED) theory predicts. The ZEM is distinguished by obvious physical parameters, quantifying the underlying flow domain with a universal multi-layer structure. The SED theory is also utilized to formulate an anisotropic Bradshaw stress-intensity factor, parameterized with an eddy-to-laminar viscosity ratio. Bradshaw’s structure function is employed to evaluate the kinetic energy of turbulence k and turbulent dissipation rate epsilon  . The proposed ZEM is intrinsically plausible, having a dramatic impact on the prediction of wall-bounded turbulence. 


Author(s):  
J Yao

The flow around a full-scale (FS) ship can be simulated by means of Reynolds-Averaged Naiver-Stokes (RANS) method, which provides a way to obtain more knowledge about scale effects on ship hydrodynamics. In this work, the viscous flow around a static drift tanker in full scale is simulated by using the RANS solver based on the open source platform OpenFOAM. The k - w SST model is employed to approximate the eddy viscosity. To reduce computational time, wall function approach is applied for the FS simulation. The flow around the ship in model scale is simulated as well, but without using any wall function, i.e., using Low-Reynolds number mode. In order to verify the computations, de- tailed studies on the computational grid including investigation of the sensitivity of computed forces to y+ (dimension- less distance of first grid point to wall) and grid dependency study are carried out. The computed forces are compared with available measured data. The scale effects are analysed and discussed by comparisons.


Sign in / Sign up

Export Citation Format

Share Document