The Effects of Forcing Direction on the Flame Transfer Function of a Lean-Burn Spray Flame

2021 ◽  
Author(s):  
Nicholas C. W. Treleaven ◽  
André Fischer ◽  
Claus Lahiri ◽  
Max Staufer ◽  
Andrew Garmory ◽  
...  

Abstract The flame transfer function (FTF) of an industrial lean-burn fuel injector has been computed using large eddy simulation (LES) and compared to experimental measurements using the multi-microphone technique and OH* measurements. The flame transfer function relates the fluctuations of heat release in the combustion chamber to fluctuations of airflow through the fuel injector and is a critical part of thermoacoustic analysis of combustion systems. The multi-microphone method derives the FTF by forcing the flame acoustically, alternating from the upstream and downstream side. Simulations emulating this methodology have been completed using compressible large eddy simulations (LES). These simulations are also used to derive an FTF by measuring the fluctuations of mass flow rate and heat release rate directly which reduces the number of simulations per frequency to one, significantly reducing the simulation cost. Simulations acoustically forced from downstream are shown to result in a lower value of the FTF gain than simulations forced from upstream with a small change in phase, this is shown to be consistent with theory. Through using a slightly different definition of the FTF, this is also shown to be consistent with measurements of the heat release rate using OH* chemiluminescence however these results are inconsistent with the multi-microphone method result. The discrepancy comes from not having an accurate measurement of the acoustic impedance at the exit plane of the injector and from certain convective phenomena that alter the downstream velocity and pressure field with respect to the purely acoustic signal. All simulations show a lower gain in the FTF than the experiments but with good reproduction of phase. Previous work suggests this error is likely due to fluctuations of the fuel spray atomisation process due to the acoustic forcing which is not modelled in this study.

2021 ◽  
pp. 1-15
Author(s):  
Chao Xu ◽  
Sibendu Som ◽  
Magnus Sjoberg

Abstract Partial fuel stratification (PFS) is a promising fuel injection strategy to improve the stability of lean combustion by applying a small pilot injection near spark timing. Mixed-mode combustion, which makes use of end-gas autoignition following conventional deflagration-based combustion, can be further utilized to speed up the overall combustion. In this study, PFS assisted mixed-mode combustion in a lean-burn direct injection spark-ignition (DISI) engine is numerically investigated using multi-cycle large eddy simulation (LES). A previously developed hybrid G-equation/well-stirred reactor combustion model is extended to the PFS condition. The experimental spray morphology is employed to derive spray model parameters for the pilot injection. The LES based model is validated against experimental data and is further compared with the Reynolds-averaged Navier-Stokes (RANS) based model. Overall, both RANS and LES predict the mean pressure and heat release rate traces well, while LES outperforms RANS in capturing the CCV and the combustion phasing in the mass burned space. Liquid and vapor penetrations obtained from the simulations agree reasonably well with the experiment. Detailed flame structures predicted from the simulations reveal the transition from a sooting diffusion flame to a lean premixed flame, which is consistent with experimental findings. LES captures more wrinkled and stretched flames than RANS. Finally, the LES model is employed to investigate the impacts of fuel properties, including heat of vaporization (HoV) and laminar burning speed (SL). Combustion phasing is found more sensitive to SL than to HoV, with a larger fuel property sensitivity of the heat release rate from autoignition than that from deflagration. Moreover, the combustion phasing in the PFS-assisted operation is shown to be less sensitive to SL compared with the well-mixed operation.


Author(s):  
Chao Xu ◽  
Sibendu Som ◽  
Magnus Sjöberg

Abstract Lean operation is beneficial to spark-ignition engines due to the high thermal efficiency compared with conventional stoichiometric operation. Lean combustion can be significantly stabilized by the partial fuel stratification (PFS) strategy, in which a small amount of pilot injection is applied near the spark energizing timing in addition to main injections during intake. Furthermore, mixed-mode combustion, which makes use of end-gas autoignition following conventional deflagration-based combustion, can be further utilized to speed up the overall combustion. In this study, PFS-assisted mixed-mode combustion in a lean-burn direct injection spark-ignition (DISI) engine is numerically investigated using multi-cycle large eddy simulation (LES). To accurately represent the pilot injection characteristics, experimentally-derived spray morphology parameters are employed for spray modeling. A previously developed hybrid G-equation/well-stirred reactor model is extended to PFS conditions, to capture interactions of pilot injection, turbulent flame propagation and end-gas autoignition. The LES-based engine model is compared with Reynolds-averaged Navier-Stokes (RANS) based model, allowing an investigation of both mean and cycle-to-cycle variation (CCV) of combustion characteristics. Instantaneous spray and flame structures from simulations are compared with experiments. The LES-based model is finally leveraged to investigate impacts of fuel properties including heat of vaporization (HoV) and laminar flame speed (SL). It is shown that overall, the predicted mean pressure and heat release rate traces from both RANS and LES agree well with the experiment, while LES captures the CCV and the combustion phasing in the mass burned space much better than RANS. Predicted liquid fuel penetrations agree reasonably well with the experiment, both for RANS and LES. Detailed flame structures in the simulations also reveal the transition from a sooting flame to a lean premixed flame, which is consistent with experimental findings. LES is shown to capture more wrinkled and stretched flame fronts than RANS. Local sensitivity analysis further identifies the stronger combustion phasing sensitivity to SL compared with that to HoV, and the stronger sensitivity of autoignition heat release rate than deflagration. The results from this study demonstrate the high fidelity of the developed computational model based on LES, enabling future investigation of PFS-assisted mixed-mode combustion for different fuels and a wider range of operating conditions.


Author(s):  
Darko N. Zigar ◽  
Dusica J. Pesic ◽  
Milan Đ. Blagojevic

Indoor fires very often may cause great material damage and endanger human lives. The heat produced by fire affects the heating and ignition of surrounding flammable materials, as well as the heating of the building structure, causing its damage. It is well known that fire spread mostly depends on flammability and quantity of surrounding material, but small differences in the amount of fuel can significantly affect the speed of fire spread, and consequently, rate of heat released by fire. In this paper, the influence of the heat release rate on fire spreading is shown. The Large Eddy Simulation method of Fire Dynamics Simulator software package has been used to investigate the prediction of fire dynamics in a compartment. Numerical results show that the fire dynamics in the compartment is largely dependent on the quantity of fire load mass and the heat release rate during the fire.


Author(s):  
Bernhard C. Bobusch ◽  
Bernhard Ćosić ◽  
Jonas P. Moeck ◽  
Christian Oliver Paschereit

Equivalence ratio fluctuations are known to be one of the key factors controlling thermoacoustic stability in lean premixed gas turbine combustors. The mixing and thus the spatio-temporal evolution of these perturbations in the combustor flow is, however, difficult to account for in present low-order modeling approaches. To investigate this mechanism, experiments in an atmospheric combustion test rig are conducted. To assess the importance of equivalence ratio fluctuations in the present case, flame transfer functions for different injection positions are measured. By adding known perturbations in the fuel flow using a solenoid valve, the influence of equivalence ratio oscillations on the heat release rate is investigated. The spatially and temporally resolved equivalence ratio fluctuations in the reaction zone are measured using two optical chemiluminescence signals, captured with an intensified camera. A steady calibration measurement allows for the quantitative assessment of the equivalence ratio fluctuations in the flame. This information is used to obtain a mixing transfer function, which relates fluctuations in the fuel flow to corresponding fluctuations in the equivalence ratio of the flame. The current study focuses on the measurement of the global, spatially integrated, transfer function for equivalence ratio fluctuations and the corresponding modeling. In addition, the spatially resolved mixing transfer function is shown and discussed. The global mixing transfer function reveals that despite the good spatial mixing quality of the investigated generic burner, the ability to damp temporal fluctuations at low frequencies is rather poor. It is shown that the equivalence ratio fluctuations are the governing heat release rate oscillation response mechanism for this burner in the low-frequency regime. The global transfer function for equivalence ratio fluctuations derived from the measurements is characterized by a pronounced low-pass characteristic, which is in good agreement with the presented convection–diffusion mixing model.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1405
Author(s):  
Kai Deng ◽  
Shenglang Zhao ◽  
Chenyang Xue ◽  
Jinlin Hu ◽  
Yi Zhong ◽  
...  

The effects of plasma on the combustion instability of a methane swirling premixed flame under acoustic excitation were investigated. The flame image of OH planar laser-induced fluorescence and the fluctuation of flame transfer function showed the mechanism of plasma in combustion instability. The results show that when the acoustic frequency is less than 100 Hz, the gain in flame transfer function gradually increases with the frequency; when the acoustic frequency is 100~220 Hz, the flame transfer function shows a trend of first decreasing and then increasing with acoustic frequency. When the acoustic frequency is greater than 220 Hz, the flame transfer function gradually decreases with acoustic frequency. When the voltage exceeds the critical discharge value of 5.3 kV, the premixed gas is ionized and the heat release rate increases significantly, thereby reducing the gain in flame transfer function and enhancing flame stability. Plasma causes changes in the internal recirculation zone, compression, and curling degree of the flame, and thereby accelerates the rate of chemical reaction and leads to an increase in flame heat release rate. Eventually, the concentration of OH radicals changes, and the heat release rate changes accordingly, which ultimately changes the combustion instability of the swirling flame.


Author(s):  
Mitchell L. Passarelli ◽  
J. D. Maxim Cirtwill ◽  
Timothy Wabel ◽  
Adam M. Steinberg ◽  
A. J. Wickersham

Abstract This paper analyzes intermittent self-excited thermoacoustic oscillations in which the pressure (P′) and heat release rate (q̇′) fluctuations are harmonically coupled. That is to say, P′ and q̇′ do not oscillate at the same frequencies, but rather at frequencies in integer ratios. Thus, this system represents a case dominated by nonlinear cross-mode coupling. The measurements were obtained in an optically-accessible combustor equipped with an industrial gas turbine fuel injector operating with liquid fuel under partially-premixed conditions at elevated pressure. High-speed chemiluminescence (CL) imaging of OH* was used as an indicator of the heat release rate. The data was processed using spectral proper orthogonal decomposition (SPOD) to isolate the dominant heat release and pressure modes. Synchronization theory was used to determine when the modes are coupled and how their interaction manifests in the measurements, particularly how it relates to the observed intermittency. The results show three distinct intervals of synchronized oscillation shared by all the mode pairs analyzed. The first interval exhibits the same characteristics as a pair of noisy, phase-locked self-oscillators, with phase-slipping and frequency-pulling. While the behaviour of the second interval differs among mode pairs, strong frequency-pulling is observed during the third interval for all pairs.


Author(s):  
Joseph Gerard T. Reyes ◽  
Edwin N. Quiros

The combustion duration in an internal combustion engine is the period bounded by the engine crank angles known as the start of combustion (SOC) and end of combustion (EOC), respectively. This period is essential in analysis of combustion for the such as the production of exhaust emissions. For compression-ignition engines, such as diesel engines, several approaches were developed in order to approximate the crank angle for the start of combustion. These approaches utilized the curves of measured in-cylinder pressures and determining by inspection the crank angle where the slope is steep following a minimum value, indicating that combustion has begun. These pressure data may also be utilized together with the corresponding cylinder volumes to generate the apparent heat release rate (AHRR), which shows the trend of heat transfer of the gases enclosed in the engine cylinder. The start of combustion is then determined at the point where the value of the AHRR is minimum and followed by a rapid increase in value, whereas the EOC is at the crank angle where the AHRR attains a flat slope prior to the exhaust stroke of the engine. To verify the location of the SOC, injection line pressures and fuel injection timing are also used. This method was applied in an engine test bench using a four-cylinder common-rail direct injection diesel engine with a pressure transducer installed in the first cylinder. Injector line pressures and fuel injector voltage signals per engine cycle were also recorded and plotted. By analyzing the trends of this curves in line with the generated AHRR curves, the SOC may be readily determined.


Author(s):  
Jihang Li ◽  
Stephen Peluso ◽  
Domenic Santavicca ◽  
James Blust

Abstract The effect of a fully-premixed pilot flame on the velocity-forced flame response of a fully premixed flame in a single-nozzle lean-premixed swirl combustor operating on natural gas fuel is investigated. Measurements of the flame transfer function show that as the percent pilot is increased there is a decrease in the flame transfer function gain at all frequencies, a decrease in the frequencies at which the gain minima and maxima occurred, and a decrease in the flame transfer function phase at high frequencies. High-speed CH* chemiluminescence flame imaging is used to gain a better understanding of the mechanism(s) whereby the pilot flame affects flame dynamics and thereby the flame transfer function. Time-averaged flame images show that the location of the maximum heat release rate does not change with forcing frequency or percent pilot, although the flame extends further upstream into the inner shear layer with increasing percent pilot. Heat release rate fluctuation images show that significant heat release rate fluctuations occur in the inner shear layer, the outer recirculation zone, and the near wall region and that the primary effect of increasing the forcing frequency or the percent pilot is a shift of the heat release rate fluctuation from the near wall region to the inner shear layer. In addition, an increase in the percent pilot results in lengthening and narrowing of the inner shear layer and the near wall regions. The phase images show that the phase is less uniform as the frequency or percent pilot increase, resulting in greater interference between in phase and out of phase fluctuations which reduces the FTF gain. The phase images also show that the wavelength of the heat release rate perturbation travelling through the inner shear layer decreases with increasing frequency and percent pilot which suggests that the pilot flame alters the recirculation flow field. Flame transfer functions calculated for the heat release rate fluctuations in the inner shear layer, the near wall region and the outer recirculation zone show that the inner shear layer is the largest contributor to the global heat release rate fluctuation in the unpiloted flame and that the primary effect of the pilot flame on the reduction of the global FTF gain is a result of the pilot flame’s effect on the inner shear layer.


Author(s):  
Poravee Orawannukul ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca

Knowledge of the effects of inlet velocity and inlet equivalence ratio fluctuations on the rate of heat release in lean premixed gas turbine combustors is essential for predicting combustor instability characteristics. This information is typically obtained from independent velocity-forced and fuel-forced flame transfer function measurements, where the global chemiluminescence intensity is used as a measure of the flame’s overall rate of heat release. The flame in an actual lean premixed combustor is referred to as a technically premixed flame and is exposed to both velocity and equivalence ratio fluctuations. Under these conditions the chemiluminescence intensity does not provide a reliable measure of the flame’s rate of heat release. The objective of this work is to experimentally assess the validity of a technique for making heat release rate measurements in technically premixed flames based on the linear superposition of fuel-forced and velocity-forced flame transfer function measurements. In the absence of a technique for directly measuring the heat release rate fluctuations in an air-forced technically premixed, the heat release reconstruction is validated indirectly by comparing measured to reconstructed chemiluminescence intensity fluctuations. Results are reported for a range of operating conditions and forcing frequencies which demonstrate the capabilities and limitations of this technique. A variation of this technique, referred to as a reverse reconstruction, is proposed which does not require a measurement of the fuel-forced flame transfer function. The air-forced flame transfer function gain and phase obtained using the reverse reconstruction technique are presented and compared to the results from the direct reconstruction technique.


2020 ◽  
pp. 146808742093240
Author(s):  
Xiao Li ◽  
Bang-Quan He ◽  
Hua Zhao

Poppet-valve two-stroke gasoline engines can increase specific power of four-stroke gasoline engines with the same displacement. But knocking combustion may also occur at high loads in two-stroke engines. The application of stratified lean-burn on poppet-valve two-stroke gasoline engines can avoid knocking and increase combustion stability. To investigate the effect of the mixture stratification on lean-burn events at high loads, simulation was conducted in different split direct injection conditions with constant fuel mass when equivalence ratio is 0.625. Results show that most fuel distributes near the center of the cylinder at any second direct injection ratio ( rSOI2). At different rSOI2s, auto-ignition occurs during flame propagation, causing shortened combustion duration. Auto-ignition causes the second peak of the heat release rate. The second peak of the heat release rate first decreases and then increases with increased rSOI2. Indicated mean effective pressure and indicated thermal efficiency increase with increased maximum pressure rise rate. The maximum indicated thermal efficiency of 42% can be reached without knocking combustion at 1500 rpm. The proportion of fuel mass through auto-ignition in the cylinder is an important factor to change the indicated thermal efficiency of a lean-burn engine at high loads.


Sign in / Sign up

Export Citation Format

Share Document