Condensation of Different Refrigerants on the Outside Surface of Smooth Cylindrical Tubes

Author(s):  
Tailian Chen

The Nusselt model of condensation provides the fundamental theory in predicting the heat transfer during the condensation process. Widely verified, its significance lies in the fact that it has been used as the baseline in evaluating the heat transfer enhancement of the condensation and often used as the basis of validating the test rig for multiphase heat transfer. The aim of this work is to re-examine the correlation for condensation on smooth cylindrical tubes. The heat transfer coefficients during condensation of four different refrigerants R123, R245fa, R134a, and R22 on the outside surface of a smooth cylindrical tube were individually measured at large degrees of subcooling, up to 25 K. The experiments were conducted at a fixed saturation temperature of 36.1 °C. Measurements showed that, for each refrigerant, the condensation heat transfer coefficient decreases with increasing degree of subcooling. At a given degree of subcooling, a higher-pressure refrigerant corresponds to a higher condensation heat transfer coefficient, with the exception that the condensation heat transfer coefficients of R134a and R245fa are nearly the same in spite of much higher pressure of the former. The predictions from the Nusselt theory for condensation heat transfer over cylinder tubes match very well with the measurements, where the predictions are 3–9% lower than the measurements for all refrigerants within the range of degree of subcooling considered in this work. A modified constant in the Nusselt number provides more accurate prediction of condensation on smooth cylindrical tubes.

2008 ◽  
Author(s):  
Pradeep A. Patil ◽  
S. N. Sapali

An experimental test facility is designed and built to calculate condensation heat transfer coefficients and pressure drops for HFC-134a, R-404A, R-407C, R-507A in a smooth and micro-fin tube. The main objective of the experimentation is to investigate the enhancement in condensation heat transfer coefficient and increase in pressure drop using micro-fin tube for different condensing temperatures and further to develop an empirical correlation for heat transfer coefficient and pressure drop, which takes into account the micro-fin tube geometry, variation of condensing temperature and temperature difference (difference between condensing temperature and average temperature of cooling medium). The experimental setup has a facility to vary the different operating parameters such as condensing temperature, cooling water temperature, flow rate of refrigerant and cooling water etc and study their effect on heat transfer coefficients and pressure drops. The hermetically sealed reciprocating compressor is used in the system, thus the effect of lubricating oil on the heat transfer coefficient is taken in to account. This paper reports the detailed description of design and development of the test apparatus, control devices, instrumentation, and the experimental procedure. It also covers the comparative study of experimental apparatus with the existing one from the available literature survey. The condensation and pressure drop of HFC-134a in a smooth tube are measured and obtained the values of condensation heat transfer coefficients for different mass flux and condensing temperatures using modified Wilson plot technique with correlation coefficient above 0.9. The condensation heat transfer coefficient and pressure drop increases with increasing mass flux and decreases with increasing condensing temperature. The results are compared with existing available correlations for validation of test facility. The experimental data points have good association with available correlations except Cavallini-Zecchin Correlation.


2000 ◽  
Vol 122 (3) ◽  
pp. 613-620 ◽  
Author(s):  
Z. Guo ◽  
N. K. Anand

An analytical model to predict condensation heat transfer coefficient in a horizontal rectangular channel was developed. The total local condensation heat transfer coefficient was represented as the weighted average of heat transfer coefficients for each wall. The analytical predictions compared well with the experimental data on the condensation of R-410A in a rectangular channel. The mean deviation was 6.75 percent. [S0022-1481(00)00503-X]


2017 ◽  
Vol 25 (03) ◽  
pp. 1750027 ◽  
Author(s):  
M. Mostaqur Rahman ◽  
Keishi Kariya ◽  
Akio Miyara

Experiments on condensation heat transfer and adiabatic pressure drop characteristics of R134a were performed inside smooth and microfin horizontal tubes. The tests were conducted in the mass flux range of 50[Formula: see text]kg/m2s to 200[Formula: see text]kg/m2s, vapor quality range of 0 to 1 and saturation temperature range of 20[Formula: see text]C to 35[Formula: see text]C. The effects of mass velocity, vapor quality, saturation temperature, and microfin on the condensation heat transfer and frictional pressure drop were analyzed. It was discovered that the local heat transfer coefficients and frictional pressure drop increases with increasing mass flux and vapor quality and decreasing with increasing saturation temperature. Higher heat transfer coefficient and frictional pressure drop in microfin tube were observed. The present experimental data were compared with the existing well-known condensation heat transfer and frictional pressure drop models available in the open literature. The condensation heat transfer coefficient and frictional pressure drop of R134a in horizontal microfin tube was predicted within an acceptable range by the existing correlation.


Author(s):  
Ramana Saketh Vanga ◽  
Sunwoo Kim

Renewable energy systems operated by a thermal energy resource such as geothermal power plants and solar thermal power systems are demanding improvement in their condensation performance [Kutscher & Costenaro, 2009]. While their energy resources are naturally obtained at almost no cost, heat rejecting components become relatively expensive to maintain and operate. In this research, a heterogeneous condensing surface is proposed to enhance the condensation heat transfer coefficient in vapor-to-liquid heat exchangers. On its surface, parallel stripes with hydrophobic feature and ones without it alternate. The effect of the partially hydrophobic condensing surface on the dropwise condensation heat transfer of saturated steam on the flat plate copper surface is experimentally investigated. A vertical flat plat condenser is constructed to evaluate the performance of the heterogeneous condensing surface in comparison with a plain copper sample and a homogeneous hydrophobic-treated copper sample. Experimental results show that condensation heat transfer of steam on the homogeneous hydrophobic-treated sample is superior to that on the plain copper surface despite the fact that both the surfaces stably promote dropwise condensation. The heat transfer coefficients for the heterogeneous surface at lower subcooling temperatures, when its stripes situate horizontally, are as high as the heat transfer coefficients for the homogeneous hydrophobic-treated surface. The enhancement for the horizontal heterogeneous sample over the plain copper sample is approximately 100%. The heat transfer coefficient for the heterogeneous sample with its stripes being vertical at 4 K subcooling is 25% greater than that of the plain copper sample. Higher heat transfer coefficients are observed at lower subcooling temperatures for all the samples. The results and observations of this project suggest that the heterogeneous surface has the potential to enhance the heat transfer coefficients.


2020 ◽  
Vol 24 (06) ◽  
pp. 115-126
Author(s):  
Mohammed Ghazi M. Kamil ◽  
◽  
Muna Sabah Kassim ◽  
Louay Abd Alazez Mahdi ◽  
◽  
...  

The heat transfer coefficient of steam condensation has a significant role in the performance of air-cooled heat exchangers. The purpose of this work is to predict the local/average local steam condensation heat transfer coefficient inside the horizontal flattened tube under vacuum conditions using numerous correlations that were developed by some researches which have been conducted under specified conditions. The results from these correlations have been compared with experimental data of Davies, therefore more investigate for the values are necessary to improve or/and validate the existing correlations. The effect of such parameters like the uniform heat flux and saturation temperature also have been studied on the local steam condensation heat transfer coefficient as the results show that the heat transfer coefficient decrease as the heat flux increase, while it increases as the steam saturated temperature increase.


Author(s):  
Xiao-peng Zhou ◽  
Jian-jun Sun ◽  
Si-pu Guo ◽  
Sun Zhichuan ◽  
Wei Li

An experimental investigation was performed for evaporation and condensation characteristics inside smooth tube, herringbone tube and EHT tube with the same outer diameter 12.7 mm, refrigerant are R22 and R410a. Mass flux are 60–140 kg/m2s, 81–178.5 kg/m2s, for evaporation and condensation respectively. The evaporation saturation temperature is 6°C, with inlet and outlet vapor qualities of 0.1 and 0.9, respectively. The condensation saturation temperature is 47°C, with inlet and outlet vapor qualities of 0.8 and 0.2, respectively. EHT tube has best evaporating performance for both R22 and R410a. Herringbone tube is also batter than smooth tube. Evaporation heat transfer coefficient increases with mass flux increasing obviously. Pressure drop of R22 evaporation in EHT tube is the highest, herringbone tube is a little higher than in smooth tube. Herringbone tube has highest condensation heat transfer coefficient, about 3 and 2.3 times that of smooth tube for R22 and R410a respectively. EHT tube has heat transfer coefficient about 2 and 1.8 times that of smooth tube for R22 and R410a respectively. Condensation heat transfer coefficient increases with increasing of mass flux, but very slowly, R410a flow in micro-fin tube even decreases with mass flux increasing.


2018 ◽  
Vol 8 (11) ◽  
pp. 2267 ◽  
Author(s):  
Norihiro Inoue ◽  
Masataka Hirose ◽  
Daisuke Jige ◽  
Junya Ichinose

In this study, the condensation heat transfer coefficient and pressure drop characteristics of a 4 mm outside diameter smooth tube, using R32, R152a, R410A, and R1234ze(E) refrigerants, were examined. Condensation heat transfer coefficients and pressure drops were measured at a saturation temperature of 35 °C, in the region of mass velocities from 100 to 400 kg m−2s−1. The frictional pressure drop, and the condensation heat transfer from the new measurements, using R1234ze(E) as a refrigerant, were compared with those of R32, R152a, and R410A, in the smooth tube. Experimental values of condensation heat transfer coefficient of smooth tube were also compared to the predicted values obtained using the previously established correlations. The previous correlation from Cavallini et al., for the condensation heat transfer coefficient of small-diameter smooth tube, was estimated to be within ±30%. However, the general correlation, which can be easily predicted, for condensation heat transfer inside small-diameter smooth tubes, was suggested, and the relationship of the general correlation was compared with data for R1234ze(E) obtained by us, and R404A and R290 obtained by other researchers.


2018 ◽  
Vol 17 (2) ◽  
pp. 57
Author(s):  
H. L. S. L. Leão ◽  
D. B. Marchetto ◽  
G. Ribatski

A comparative study of the performance of of refrigerants R134a, R407C, R245fa and R600a during flow boiling was performed for a 123x494 µm2 heat sink composed of 50 parallel rectangular microchannels. Heat transfer experimental results for heat fluxes up to 310 kW/m2, mass velocities from 300 to 800 kg/(m2 s), liquid subcoolings of 5 and 10 °C and saturation temperature close to 30 ºC were obtained. Global heat transfer coefficients (footprint) up to 10 kW/(m2 °C) were found. The liquid superheating necessary for the onset of nucleate boiling (ONB) was also characterized, and the fluids R245fa and R407C presented the highest and lowest, respectively, superheating to trigger the boiling process. Moreover, for a fixed averaged vapor quality, the average effective heat transfer coefficient increases with increasing mass velocity and liquid subcooling. The refrigerants R600a and R407C presented the highest and the lowest heat transfer coefficients, respectively. Five heat transfer predictive methods from literature provided accurate predictions of the data for R134a, R245fa and R600a, capturing most of the data trends. No one method provided accurate predictions of the heat transfer coefficient data of R407C.


Author(s):  
Tailian Chen

In this work, heat transfer coefficients during condensation of an environment-friendly refrigerant R-1233zd(e) on the outside surface of two cylindrical tubes are individually measured. The cooling water flows inside the tubes and provides cooling to the vapor refrigerant. One tube is a plain smooth tube (smooth both inside and outside) while the other tube is an enhanced tube, with the inside surface having 2D helical ridges and the outside surface having 3D extruded fins. The tests were conducted at the saturation temperature 36.1 °C, a typical temperature in chiller condensers. The results show the overall heat transfer coefficients of the enhanced tube are approximately 8.4 times higher as a result of the heat transfer enhancement on both sides. The condensation heat transfer degrades with an increase in the degree of subcooling, and the trend of degradation is the nearly the same for both the smooth and the enhanced tube, both is smaller than that in the Nusselt correlation. Compared with condensation on the smooth surface, the condensation heat transfer from the enhanced surface is enhanced approximately 10.8 times higher than that on the smooth surface. In addition to enlarged heat transfer area of the extruded fins, the enhancement in the condensation heat transfer is partly attributed to a better condensate draining mechanism of the 3D-structured fins where surface tension plays an important role. Further analysis reveals that heat transfer during the condensation process on the 3D low-fin surface follows the Nusselt correlation with a multiplier that accounts for the enhancement in heat transfer, which is desirably simple approach to modeling condensation heat transfer on the complex 3D enhanced surfaces. This work can lead to more insights into the physical mechanisms during the complex condensation process.


Author(s):  
Ann-Christin Fleer ◽  
Markus Richter ◽  
Roland Span

AbstractInvestigations of flow boiling in highly viscous fluids show that heat transfer mechanisms in such fluids are different from those in fluids of low viscosity like refrigerants or water. To gain a better understanding, a modified standard apparatus was developed; it was specifically designed for fluids of high viscosity up to 1000 Pa∙s and enables heat transfer measurements with a single horizontal test tube over a wide range of heat fluxes. Here, we present measurements of the heat transfer coefficient at pool boiling conditions in highly viscous binary mixtures of three different polydimethylsiloxanes (PDMS) and n-pentane, which is the volatile component in the mixture. Systematic measurements were carried out to investigate pool boiling in mixtures with a focus on the temperature, the viscosity of the non-volatile component and the fraction of the volatile component on the heat transfer coefficient. Furthermore, copper test tubes with polished and sanded surfaces were used to evaluate the influence of the surface structure on the heat transfer coefficient. The results show that viscosity and composition of the mixture have the strongest effect on the heat transfer coefficient in highly viscous mixtures, whereby the viscosity of the mixture depends on the base viscosity of the used PDMS, on the concentration of n-pentane in the mixture, and on the temperature. For nucleate boiling, the influence of the surface structure of the test tube is less pronounced than observed in boiling experiments with pure fluids of low viscosity, but the relative enhancement of the heat transfer coefficient is still significant. In particular for mixtures with high concentrations of the volatile component and at high pool temperature, heat transfer coefficients increase with heat flux until they reach a maximum. At further increased heat fluxes the heat transfer coefficients decrease again. Observed temperature differences between heating surface and pool are much larger than for boiling fluids with low viscosity. Temperature differences up to 137 K (for a mixture containing 5% n-pentane by mass at a heat flux of 13.6 kW/m2) were measured.


Sign in / Sign up

Export Citation Format

Share Document