scholarly journals PREDICTING OF STEAM CONDENSATION HEAT TRANSFER COEFFICIENT IN HORIZONTAL FLATTENED TUBE

2020 ◽  
Vol 24 (06) ◽  
pp. 115-126
Author(s):  
Mohammed Ghazi M. Kamil ◽  
◽  
Muna Sabah Kassim ◽  
Louay Abd Alazez Mahdi ◽  
◽  
...  

The heat transfer coefficient of steam condensation has a significant role in the performance of air-cooled heat exchangers. The purpose of this work is to predict the local/average local steam condensation heat transfer coefficient inside the horizontal flattened tube under vacuum conditions using numerous correlations that were developed by some researches which have been conducted under specified conditions. The results from these correlations have been compared with experimental data of Davies, therefore more investigate for the values are necessary to improve or/and validate the existing correlations. The effect of such parameters like the uniform heat flux and saturation temperature also have been studied on the local steam condensation heat transfer coefficient as the results show that the heat transfer coefficient decrease as the heat flux increase, while it increases as the steam saturated temperature increase.

Author(s):  
Nae-Hyun Kim ◽  
Wang-Kyu Oh ◽  
Jung-Ho Ham ◽  
Do-Young Kim ◽  
Tae-Ryong Shin

Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with Dh = 1.41 mm. The test range covered mass flux from 100 to 600 kg/m2 s, heat flux from 5 to 15 kW/m2 and saturation temperature from 5°C to 15°C. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique ‘cross-over’ of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.


Author(s):  
Xiao-peng Zhou ◽  
Jian-jun Sun ◽  
Si-pu Guo ◽  
Sun Zhichuan ◽  
Wei Li

An experimental investigation was performed for evaporation and condensation characteristics inside smooth tube, herringbone tube and EHT tube with the same outer diameter 12.7 mm, refrigerant are R22 and R410a. Mass flux are 60–140 kg/m2s, 81–178.5 kg/m2s, for evaporation and condensation respectively. The evaporation saturation temperature is 6°C, with inlet and outlet vapor qualities of 0.1 and 0.9, respectively. The condensation saturation temperature is 47°C, with inlet and outlet vapor qualities of 0.8 and 0.2, respectively. EHT tube has best evaporating performance for both R22 and R410a. Herringbone tube is also batter than smooth tube. Evaporation heat transfer coefficient increases with mass flux increasing obviously. Pressure drop of R22 evaporation in EHT tube is the highest, herringbone tube is a little higher than in smooth tube. Herringbone tube has highest condensation heat transfer coefficient, about 3 and 2.3 times that of smooth tube for R22 and R410a respectively. EHT tube has heat transfer coefficient about 2 and 1.8 times that of smooth tube for R22 and R410a respectively. Condensation heat transfer coefficient increases with increasing of mass flux, but very slowly, R410a flow in micro-fin tube even decreases with mass flux increasing.


2018 ◽  
Vol 8 (11) ◽  
pp. 2267 ◽  
Author(s):  
Norihiro Inoue ◽  
Masataka Hirose ◽  
Daisuke Jige ◽  
Junya Ichinose

In this study, the condensation heat transfer coefficient and pressure drop characteristics of a 4 mm outside diameter smooth tube, using R32, R152a, R410A, and R1234ze(E) refrigerants, were examined. Condensation heat transfer coefficients and pressure drops were measured at a saturation temperature of 35 °C, in the region of mass velocities from 100 to 400 kg m−2s−1. The frictional pressure drop, and the condensation heat transfer from the new measurements, using R1234ze(E) as a refrigerant, were compared with those of R32, R152a, and R410A, in the smooth tube. Experimental values of condensation heat transfer coefficient of smooth tube were also compared to the predicted values obtained using the previously established correlations. The previous correlation from Cavallini et al., for the condensation heat transfer coefficient of small-diameter smooth tube, was estimated to be within ±30%. However, the general correlation, which can be easily predicted, for condensation heat transfer inside small-diameter smooth tubes, was suggested, and the relationship of the general correlation was compared with data for R1234ze(E) obtained by us, and R404A and R290 obtained by other researchers.


Author(s):  
Nae-Hyun Kim ◽  
Young-Sup Sim ◽  
Chang-Keun Min

Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with Dh = 1.41 mm. The test range covered mass flux from 200 to 600 kg/m2 s, heat flux from 5 to 15 kW/m2 and saturation temperature from 5°C to 15°C. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique ‘cross-over’ of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.


Author(s):  
Wei Li ◽  
Si-pu Guo ◽  
Xiao-peng Zhou ◽  
David J. Kukulka ◽  
Jin-liang Xu

An experimental investigation was performed to evaluate the condensation characteristics inside smooth, herringbone and dimple-textured (Vipertex 1EHT) tubes; with the same outer diameter (12.7 mm); using R22 and R410a refrigerants; for a mass flux that ranges from 81 to 178.5 kg/m 2 s. The condensation saturation temperature is 47°C; with an inlet quality of 0.8 and an outlet vapor quality of 0.2. Results indicate that the condensation heat transfer coefficient of the herringbone tube was approximately 3 times that of the smooth tube for R22; and has an enhancement heat transfer factor of 2.3 for R410a. The enhancement heat transfer coefficient multiplier for the textured dimple tube is approximately 2 times that of a smooth tube for R22; and 1.8 for R410a. Severalpreviously reported correlations are used to compare the heat transfer coefficient measurements in the plain tube; while a new equation is proposed to predict the heat transfer coefficient in the herringbone tube.


Author(s):  
Tailian Chen

The Nusselt model of condensation provides the fundamental theory in predicting the heat transfer during the condensation process. Widely verified, its significance lies in the fact that it has been used as the baseline in evaluating the heat transfer enhancement of the condensation and often used as the basis of validating the test rig for multiphase heat transfer. The aim of this work is to re-examine the correlation for condensation on smooth cylindrical tubes. The heat transfer coefficients during condensation of four different refrigerants R123, R245fa, R134a, and R22 on the outside surface of a smooth cylindrical tube were individually measured at large degrees of subcooling, up to 25 K. The experiments were conducted at a fixed saturation temperature of 36.1 °C. Measurements showed that, for each refrigerant, the condensation heat transfer coefficient decreases with increasing degree of subcooling. At a given degree of subcooling, a higher-pressure refrigerant corresponds to a higher condensation heat transfer coefficient, with the exception that the condensation heat transfer coefficients of R134a and R245fa are nearly the same in spite of much higher pressure of the former. The predictions from the Nusselt theory for condensation heat transfer over cylinder tubes match very well with the measurements, where the predictions are 3–9% lower than the measurements for all refrigerants within the range of degree of subcooling considered in this work. A modified constant in the Nusselt number provides more accurate prediction of condensation on smooth cylindrical tubes.


2018 ◽  
Vol 26 (6) ◽  
pp. 16-31
Author(s):  
Ahmed Jasim Hamad ◽  
Rasha Abdulrazzak Jasim

An experimental investigation of refrigerant R-134a two-phase flow condensation heat transfer coefficient and pressure drop in condenser tube section of refrigeration system under different operating conditions is presented. The experimental and theoretical investigations are based on test conditions in range of 10 -17 kW/m2 for heat flux, 42-63 kg/m2s for mass flux, vapor quality 1-0.03 and saturation temperature 44 to 49˚C. The experimental tests are conducted on test rig supplied with a test section to simulate the water cooled double pipe heat exchanger, which is designed and constructed in the present work. “The experimental results have revealed that, the heat flux and mass flux have significant impacts on the heat transfer coefficient. “The heat transfer coefficient was increased with increase in heat flux and mass flux at prescribed test conditions, where the enhancement in heat transfer coefficient was about 47% and 14% for relatively higher heat flux and mass flux, respectively. “The enhancement in the heat transfer coefficient was about 51% for relatively lower saturation temperature 45.97˚C and 43% for higher vapor quality 0.88 compared to other values at constant test conditions. “The pressure drop was higher in the range of 12% and 49% for relatively higher mass flux and heat flux respectively. “The present work results have validated by comparison with predictive models and with similar research work results and the comparison has revealed  an acceptable agreement.


Author(s):  
Atsushi Tokunaga ◽  
Masaki Mizutani ◽  
Gyoko Nagayama ◽  
Takaharu Tsuruta

The micro/nano scale phase change phenomena become more and more important because the MEMS technology develops rapidly in the fields of electro- and bio-devices [1][2] and the MEMS enable us to control the surface wettability. In the dropwise condensation on the hydrophobic surface, the heat transfer coefficient is determined by the departing droplet size. In our previous paper, it was found that the droplets in radius around 7 μm made more significant contribution to the condensation heat transfer under the low-pressure conditions. That is, when the smaller droplets less than 7 μm cover the condensing surface, the higher condensing heat flux would be achieved than that of the ordinary dropwise condensation. However, it is still very difficult to keep the droplets to be continuous condensed within 7 μm at the surface. A challenging work has been conducted to fabricate a droplets exclusion structure on the condensing surface for the purpose of the enhancement of condensation heat transfer in our previous experiment [3]. By using the MEMS technology, we made the hybrid-condensing surface with hydrophobic and hydrophilic patterns in order to remove the grown droplets effectively. It was found that the hybrid-surface has a possibility to increase the condensation heat transfer coefficient but its drainage-ability of the condensate has the limitation due to the occurrence of the flooding over the surface structures. In order to reduce the flooding at the hydrophobic area, in this study, the new design of the condensing surface has been proposed and the condensation heat transfer coefficient is evaluated.


Author(s):  
Chaxiu Guo ◽  
Dongwei Zhang ◽  
Junjie Zhou ◽  
Wujun Zhang ◽  
Xinli Wei

The heat flux on the receiver tube is non-uniform because of uneven solar flux and receiver structure, which causes overheating and thermal stress failure of receiver and affected safe operations of the Concentrated Solar Power (CSP) system. In order to reduce the temperature difference in receiver tube wall and improve the efficiency of CSP system, the ternary eutectic salt LiF-NaF-KF (46.5-11.5-42 wt.%, hereafter FLiNaK), which has a better high thermal stability than that of nitrate salts at operating temperature of 900 °C, is selected as HTF, and heat transfer performance of FLiNaK in a corrugated receive tube with non-uniform heat flux is simulated by CFD software in the present work. The numerical results reveal that the non-uniform heat flux has a great influence on the temperature distributions of the receive tube and FLiNaK salt. Compared with the result of bare tube, the corrugated tube can not only significantly reduce the temperature difference in tube wall and salt by improving the uniformity of temperature distribution but also enhance the heat transfer of the salt, where the heat transfer coefficient increases with the Reynolds number and heat flux. Moreover, the enhanced effect of the corrugated tube depends on both the pitch and the height of ridges. It is found that the heat transfer coefficient of the salt gets a maximum when the ratio of the height of ridge to the pitch is 0.2. The research presented here may provide guidelines for design optimization of receiver tube in CSP system.


Sign in / Sign up

Export Citation Format

Share Document